留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Advanced design strategies for multi-dimensional structured carbon materials for high-performance Zn-air batteries

YING Jia-ping ZHENG Dong MENG Shi-bo YIN Rui-lian DAI Xiao-jing FENG Jin-xiu WU Fang-fang SHI Wen-hui CAO Xie-hong

应佳萍, 郑冬, 孟诗博, 尹瑞连, 戴晓婧, 冯锦秀, 毋芳芳, 施文慧, 曹澥宏. 多维度炭材料在高性能锌-空气电池中的先进设计策略. 新型炭材料(中英文), 2022, 37(4): 641-657. doi: 10.1016/S1872-5805(22)60623-1
引用本文: 应佳萍, 郑冬, 孟诗博, 尹瑞连, 戴晓婧, 冯锦秀, 毋芳芳, 施文慧, 曹澥宏. 多维度炭材料在高性能锌-空气电池中的先进设计策略. 新型炭材料(中英文), 2022, 37(4): 641-657. doi: 10.1016/S1872-5805(22)60623-1
YING Jia-ping, ZHENG Dong, MENG Shi-bo, YIN Rui-lian, DAI Xiao-jing, FENG Jin-xiu, WU Fang-fang, SHI Wen-hui, CAO Xie-hong. Advanced design strategies for multi-dimensional structured carbon materials for high-performance Zn-air batteries. New Carbon Mater., 2022, 37(4): 641-657. doi: 10.1016/S1872-5805(22)60623-1
Citation: YING Jia-ping, ZHENG Dong, MENG Shi-bo, YIN Rui-lian, DAI Xiao-jing, FENG Jin-xiu, WU Fang-fang, SHI Wen-hui, CAO Xie-hong. Advanced design strategies for multi-dimensional structured carbon materials for high-performance Zn-air batteries. New Carbon Mater., 2022, 37(4): 641-657. doi: 10.1016/S1872-5805(22)60623-1

多维度炭材料在高性能锌-空气电池中的先进设计策略

doi: 10.1016/S1872-5805(22)60623-1
基金项目: 国家自然科学基金项目(51972286,21905246,22005268),浙江省自然科学基金项目(LR19E020003,LZ21E020003,LQ20B010011),浙江省省属高校基本科研业务费资助项目(RF-B-2020004),浙江省创新创业领军团队引进计划(2020R01002)
详细信息
    通讯作者:

    尹瑞连,讲师. E-mail:yinrl0501@zjut.edu.cn

    曹澥宏,教授. E-mail:gcscaoxh@zjut.edu.cn

  • 中图分类号: TQ127.1+1

Advanced design strategies for multi-dimensional structured carbon materials for high-performance Zn-air batteries

More Information
  • 摘要: 锌-空气电池(ZABs)具有高安全性、低成本、高比容量和环境友好等特点,已成为能源研究的热点之一。然而,空气正极上缓慢的氧析出/氧还原反应(OER/ORR)和锌负极上不可忽视的锌枝晶生长问题严重阻碍了锌-空气电池的大规模应用。在过去的几年里,具有低成本、良好导电性、高化学稳定性和OER/ORR双功能催化活性的炭材料已被广泛研究。本文首先介绍了锌-空气电池的基本原理及炭材料应用于锌-空气电池中的特点与优势。进一步综述了多维度炭材料(一维、二维、三维)在空气电极、锌负极和隔膜等电池主体中的研究进展,着重讨论多维度炭材料对电池性能的提升机理。最后,提出了当前炭材料应用于锌-空气电池面临的挑战,并对未来的研究重点与发展方向进行了展望。
  • FIG. 1650.  FIG. 1650.

    FIG. 1650..  FIG. 1650.

    Figure  1.  Multi-dimensional carbon materials in Zn-air batteries.

    Figure  2.  (a) Schematic images of NCNTM. (b) Galvanostatic cycling stability at 5 mA cm−2 for NCNTM and Pt/C+IrO2 assembled ZABs[32]. (c) Schematic of the CoSe2-NCNT NSA. (d) The cactus-like electrode for flexible ZABs under flat and bending states. (e) Cycling performance of the CoSe2-NCNT NSA-based flexible ZAB at different bending angles[36] (Reprinted with permission).

    Figure  3.  (a) HR-TEM image of the FeCo/Se-CNT catalyst. (b) Discharge polarization and corresponding power density curves[44. (c) SEM image of CoB/NCNT bifunctional electrocatalysts prepared at different temperatures. (d) TEM image of individual CNTs and encapsulated CoB nanoparticles[45]. (e) TEM image of PPy nanotubes. (f) TEM image of PPy@ZIF67[50]. (g) Schematic synthetic procedure of Co-N/CNTs[51] (Reprinted with permission).

    Figure  4.  (a) Schematic illustration of the fabrication process of Cu-Co2P@2D-NPC[56]. (b) Preparation routes of the 2D NG and 2D Fe-NG[57]. (c-d) SEM images of NC-Co SA[62]. (e) Schematic illustration of the Fe-N-C/rGO catalyst synthesized by in situ Fe-doped ZIF-8 on reduced graphene oxide[63] (Reprinted with permission).

    Figure  5.  (a) SEM image of O-CC-H2. (b) SEM image of a cross section of o-CC-H2[64]. (c) TEM image of CoSx@PCN/rGO. (d) CoSx@PCN/rGO in a rechargeable ZAB at a current of 50 mA[73]. (e) Synthesis and structural characterization of Co2Fe@NC[78]. (f-g) Schematic illustration for the HXP preparation[76] (Reprinted with permission).

    Figure  6.  (a-b) SEM image of Fe-P/NHCF pearl necklace carbon nanofiber[90]. (c) Schematic illustration for the fabrication process of Co @ NCNT HMS[91]. (d-e) SEM images of CoFe20@CC[93]. (f-g) SEM images under different magnifications of FeP/Fe2O3@NPCA[94] (Reprinted with permission).

    Figure  7.  (a) Schematic illustration of the synthesis of SA-Fe-NHPC[98]. (b) Schematic representation of the fabrication method for 3D HNG[102]. (c) SEM image of Co-N-C/rGO-6-600 catalyst. (d) Cycling performance of rechargeable ZABs based on Co-N-C/rGO-6-600 and commercial Pt/C at 5 mA cm−2105. (e) SEM images of the pre-synthesized corresponding colloidal MOFs crystals[106] (Reprinted with permission).

    Figure  8.  (a-b) SEM images of Zn-G electrodes . (c) SEM image of Zn after cycling 24 h with the capacity of 1.5 mAh cm−2[113]. (d) Schematic illustration of ZNR@GO image. (e) Chemical buffer layer (CBL) enabled highly reversible Zn anode for deeply discharging and long-life Zn-air battery[114] (Reprinted with permission).

    Figure  9.  (a) Schematic diagram of the overall preparation procedure (functionalization, filtration, cross-linking, and hydroxide-exchange) for the QAFCGO membrane. (b) SEM image (cross section) of the QAFCGO membrane. (c) A schematic illustration of ion transport mechanism with QAFGO and QAFC[117] (Reprinted with permission).

  • [1] Fu J, Cano Z P, Park M G, et al. Electrically rechargeable zinc-air batteries: Progress, challenges, and perspectives[J]. Advanced Materials,2017,29(7):1604685. doi: 10.1002/adma.201604685
    [2] Li Y, Dai H. Recent advances in zinc-air batteries[J]. Chemical Society Reviews,2014,43(15):5143-5402. doi: 10.1039/C4CS90060J
    [3] Zhang T, Bian J, Zhu Y, et al. FeCo nanoparticles encapsulated in N-doped carbon nanotubes coupled with layered double (Co, Fe) hydroxide as an efficient bifunctional catalyst for rechargeable zinc-air batteries[J]. Small,2021,17(44):2103737. doi: 10.1002/smll.202103737
    [4] Song Z, Ding J, Liu B, et al. A rechargeable Zn-air battery with high energy efficiency and long life enabled by a highly water-retentive gel electrolyte with reaction modifier[J]. Advanced Materials,2020,32(22):1908127. doi: 10.1002/adma.201908127
    [5] Wang C, Li J, Zhou Z, et al. Rechargeable zinc-air batteries with neutral electrolytes: Recent advances, challenges, and prospects[J]. EnergyChem,2021,3(4):100055. doi: 10.1016/j.enchem.2021.100055
    [6] Cao X, Yin Z, Zhang H. Three-dimensional graphene materials: Preparation, structures and application in supercapacitors[J]. Energy & Environmental Science,2014,7(6):1850-1865. doi: 10.1039/c4ee00050a
    [7] Fu J, Liang R, Liu G, et al. Recent progress in electrically rechargeable zinc-air batteries[J]. Advanced Materials,2018,31(31):1805230.
    [8] Liu T, Mou J, Wu Z, et al. A facile and scalable strategy for fabrication of superior bifunctional freestanding air electrodes for flexible zinc-air batteries[J]. Advanced Functional Materials,2020,30(36):2003407. doi: 10.1002/adfm.202003407
    [9] Xia C, Huang L, Yan D, et al. Electrospinning synthesis of self-standing cobalt/nanocarbon hybrid membrane for long-life rechargeable zinc-air batteries[J]. Advanced Functional Materials,2021,31(43):2105021. doi: 10.1002/adfm.202105021
    [10] Sun. W, Wang F, Zhang B, et al. A rechargeable zinc-air battery based on zinc peroxide chemistry[J]. Science,2020,371(6524):645-648. doi: 10.1126/science.abb9554
    [11] Wu J, Liu B, Fan X, et al. Carbon-based cathode materials for rechargeable zinc-air batteries: From current collectors to bifunctional integrated air electrodes[J]. Carbon Energy,2020,2(3):370-386. doi: 10.1002/cey2.60
    [12] Wang Z, Zhu C, Tan H, et al. Understanding the synergistic effects of cobalt single atoms and small nanoparticles: Enhancing oxygen reduction reaction catalytic activity and stability for zinc-air batteries[J]. Advanced Functional Materials,2021,31(45):2104735. doi: 10.1002/adfm.202104735
    [13] Yu M, Wang Z, Hou C, et al. Nitrogen-doped Co3O4 mesoporous nanowire arrays as an additive-free air-cathode for flexible solid-state zinc-air batteries[J]. Advanced Materials,2017,29(15):1602868. doi: 10.1002/adma.201602868
    [14] Stock D, Dongmo S, Janek J, et al. Benchmarking anode concepts: the future of electrically rechargeable zinc-air batteries[J]. ACS Energy Letters,2019,4(6):1287-1300. doi: 10.1021/acsenergylett.9b00510
    [15] Liang P, Yi J, Liu X, et al. Highly reversible Zn anode enabled by controllable formation of nucleation sites for Zn-based batteries[J]. Advanced Functional Materials,2020,30(13):1908528. doi: 10.1002/adfm.201908528
    [16] Li C, Sun Z, Yang T, et al. Directly grown vertical graphene carpets as janus separators toward stabilized Zn metal anodes[J]. Advanced Materials,2020,32(33):2003425. doi: 10.1002/adma.202003425
    [17] Oh Y S, Jung G Y, Kim J H, et al. Janus-faced, dual-conductive/chemically active battery separator membranes[J]. Advanced Functional Materials,2016,26(39):7074-7083. doi: 10.1002/adfm.201602734
    [18] Cao J, Zhang D, Gu C, et al. Modulating Zn deposition via ceramic-cellulose separator with interfacial polarization effect for durable zinc anode[J]. Nano Energy,2021,89:106322. doi: 10.1016/j.nanoen.2021.106322
    [19] Liu T, Hong J, Wang J, et al. Uniform distribution of zinc ions achieved by functional supramolecules for stable zinc metal anode with long cycling lifespan[J]. Energy Storage Materials,2022,45:1074-1083. doi: 10.1016/j.ensm.2021.11.002
    [20] Han D, Wu S, Zhang S, et al. A corrosion-resistant and dendrite-free zinc metal anode in aqueous systems[J]. Small,2020,16(29):2001736. doi: 10.1002/smll.202001736
    [21] Zhao C X, Liu J N, Wang J, et al. A ΔE=0.63 V bifunctional oxygen electrocatalyst enables high-rate and long-cycling zinc-air batteries[J]. Advanced Materials,2021,33(15):2008606. doi: 10.1002/adma.202008606
    [22] Fu J, Liang R, Liu G, et al. Recent progress in electrically rechargeable zinc-air batteries[J]. Advanced Materials,2019,31(31):1805230. doi: 10.1002/adma.201805230
    [23] Dong Q, Wang H, Ji S, et al. Mn nanoparticles encapsulated within mesoporous helical N-doped carbon nanotubes as highly active air cathode for zinc-air batteries[J]. Advanced Sustainable Systems,2019,3(12):1900085. doi: 10.1002/adsu.201900085
    [24] Weng C, Ren J, Wang H, et al. Triple-phase oxygen electrocatalysis of hollow spherical structures for rechargeable Zn-Air batteries[J]. Applied Catalysis B: Environmental,2022,307:121190. doi: 10.1016/j.apcatb.2022.121190
    [25] Zheng X, Chen Y, Zheng X, et al. Electronic structure engineering of LiCoO2 toward enhanced oxygen electrocatalysis[J]. Advanced Energy Materials,2019,9(16):1803482. doi: 10.1002/aenm.201803482
    [26] Zhu Y H, Yang X Y, Liu T, et al. Flexible 1D batteries: Recent progress and prospects[J]. Advanced Materials,2020,32(5):1901961. doi: 10.1002/adma.201901961
    [27] He Y, Zhuang X, Lei C, et al. Porous carbon nanosheets: Synthetic strategies and electrochemical energy related applications[J]. Nano Today,2019,24:103-119. doi: 10.1016/j.nantod.2018.12.004
    [28] Jorge A B, Jervis R, Periasamy A P, et al. 3D carbon materials for efficient oxygen and hydrogen electrocatalysis[J]. Advanced Energy Materials,2019,10(11):1902494. doi: 10.1002/aenm.201902494
    [29] Liu W, Yin R, Xu X, et al. Structural engineering of low-dimensional metal-organic frameworks: Synthesis, properties, and applications[J]. Advance Science,2019,6(12):1802373. doi: 10.1002/advs.201802373
    [30] Xing X, Liu R, Anjass M, et al. Bimetallic manganese-vanadium functionalized N, S-doped carbon nanotubes as efficient oxygen evolution and oxygen reduction electrocatalysts[J]. Applied Catalysis B:Environmental,2020,277:119195. doi: 10.1016/j.apcatb.2020.119195
    [31] Guo D H, Shibuya R, Akiba C, et al. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science, 2016, 351: 361-365.
    [32] Chen G, Xu Y, Huang L, et al. Continuous nitrogen-doped carbon nanotube matrix for boosting oxygen electrocatalysis in rechargeable Zn-air batteries[J]. Journal of Energy Chemistry,2021,55:183-189. doi: 10.1016/j.jechem.2020.07.012
    [33] Guan C, Sumboja A, Zang W, et al. Decorating Co/CoNx nanoparticles in nitrogen-doped carbon nanoarrays for flexible and rechargeable zinc-air batteries[J]. Energy Storage Materials,2019,16:243-250. doi: 10.1016/j.ensm.2018.06.001
    [34] Ruan P, Xu X, Gao X, et al. Achieving long-cycle-life Zn-ion batteries through interfacial engineering of MnO2-polyaniline hybrid networks[J]. Sustainable Materials and Technologies,2021,28:e00254. doi: 10.1016/j.susmat.2021.e00254
    [35] Fan K, Li Z, Song Y, et al. Confinement synthesis based on layered double hydroxides: A new strategy to construct single-atom-containing integrated electrodes[J]. Advanced Functional Materials,2020,31(10):2008064. doi: 10.1002/adfm.202008064
    [36] Liu W, Zheng D, Zhang L, et al. Bioinspired interfacial engineering of a CoSe2 decorated carbon framework cathode towards temperature-tolerant and flexible Zn-air batteries[J]. Nanoscale,2021,13(5):3019-3026. doi: 10.1039/D0NR08365H
    [37] Han Y, Duan H, Zhou C, et al. Stabilizing cobalt single atoms via flexible carbon membranes as bifunctional electrocatalysts for binder-free zinc-air batteries[J]. Nano Letters,2022,22:2497-2505. doi: 10.1021/acs.nanolett.2c00278
    [38] Fang J, Zhang X, Wang X, et al. A metal and nitrogen doped carbon composite with both oxygen reduction and evolution active sites for rechargeable zinc-air batteries[J]. Journal of Materials Chemistry A,2020,8:15752. doi: 10.1039/D0TA02544E
    [39] Povie G, Segawa Y, Nishihara T, et al. Synthesis of a carbon nanobelt[J]. Science,2017,356(6334):172-175. doi: 10.1126/science.aam8158
    [40] Cheung K Y, Watanabe K, Segawa Y, et al. Synthesis of a zigzag carbon nanobelt[J]. Nature Chemistry,2021,13(3):255-259. doi: 10.1038/s41557-020-00627-5
    [41] Yin Z, Zhu J, He Q, et al. Graphene-based materials for solar cell applications[J]. Advanced energy materials,2014,4(1):1300574. doi: 10.1002/aenm.201300574
    [42] Zhang L, Jin L, Liu B, et al. Templated growth of crystalline mesoporous materials: From soft/hard templates to colloidal templates[J]. Frontiers in Chemistry,2019,7:22. doi: 10.3389/fchem.2019.00022
    [43] Stucki M, Loepfe M, Stark W J. Porous polymer membranes by hard templating-a review[J]. Advanced Engineering Materials,2018,20(1):1700611. doi: 10.1002/adem.201700611
    [44] Zhang H, Zhao M, Liu H, et al. Ultrastable FeCo bifunctional electrocatalyst on Se-doped CNTs for liquid and flexible all-solid-state rechargeable Zn-air batteries[J]. Nano Letters,2021,21(5):2255-2264. doi: 10.1021/acs.nanolett.1c00077
    [45] Elumeeva K, Masa J, Medina D, et al. Cobalt boride modified with N-doped carbon nanotubes as a high-performance bifunctional oxygen electrocatalyst[J]. Journal of Materials Chemistry A,2017,5(40):21122-21129. doi: 10.1039/C7TA06995B
    [46] Han J, Bao H, Wang J Q, et al. 3D N-doped ordered mesoporous carbon supported single-atom Fe-N-C catalysts with superior performance for oxygen reduction reaction and zinc-air battery[J]. Applied Catalysis B: Environmental,2021,280:119411. doi: 10.1016/j.apcatb.2020.119411
    [47] Wang Y, Lu D, Wang F, et al. A new strategy to prepare carbon nanotube thin film by the combination of top-down and bottom-up approaches[J]. Carbon,2020,161:563-569. doi: 10.1016/j.carbon.2020.01.090
    [48] Wang Y, Qu M, Xiong S, et al. Covalently bonded polyaniline-reduced graphene oxide/single-walled carbon nanotubes nanocomposites: influence of various dimensional carbon nanostructures on the electrochromic behavior of PANI[J]. Polymer Journal,2020,52(7):783-792. doi: 10.1038/s41428-020-0320-2
    [49] Wang Y, Fugetsu B, Wang Z, et al. Nitrogen-doped porous carbon monoliths from polyacrylonitrile (PAN) and carbon nanotubes as electrodes for supercapacitors[J]. Scientific Reports,2017,7:40259. doi: 10.1038/srep40259
    [50] Zhou Q, Zhang Z, Cai J, et al. Template-guided synthesis of Co nanoparticles embedded in hollow nitrogen doped carbon tubes as a highly efficient catalyst for rechargeable Zn-air batteries[J]. Nano Energy,2020,71:104592. doi: 10.1016/j.nanoen.2020.104592
    [51] Liu Y, Chen F, Ye W, et al. High-performance oxygen reduction electrocatalyst derived from polydopamine and cobalt supported on carbon nanotubes for metal-air batteries[J]. Advanced Functional Materials,2017,27(12):1-6. doi: 10.1002/adfm.201606034
    [52] Jia Z, Li Y, Zuo Z, et al. Synthesis and properties of 2D carbon-graphdiyne[J]. Accounts of Chemical Research,2017,50(10):2470-2478. doi: 10.1021/acs.accounts.7b00205
    [53] Zhang X, Cheng H, Zhang H. Recent progress in the preparation, assembly, transformation, and applications of layer-structured nanodisks beyond graphene[J]. Advanced Materials,2017,29(35):1701704. doi: 10.1002/adma.201701704
    [54] Geim A K. Graphene: status and prospects[J]. Science,2009,324(5934):1530-1534. doi: 10.1126/science.1158877
    [55] Chang G, Ren J, She X, et al. How heteroatoms (Ge, N, P) improve the electrocatalytic performance of graphene: theory and experiment[J]. Science Bulletin,2018,63(3):155-158. doi: 10.1016/j.scib.2018.01.013
    [56] Diao L, Yang T, Chen B, et al. Electronic reconfiguration of Co2P induced by Cu doping enhancing oxygen reduction reaction activity in zinc-air batteries[J]. Journal of Materials Chemistry A,2019,7(37):21232-21243. doi: 10.1039/C9TA07652B
    [57] Wang C, Liu Y, Li Z, et al. Novel space-confinement synthesis of two-dimensional Fe, N-codoped graphene bifunctional oxygen electrocatalyst for rechargeable air-cathode[J]. Chemical Engineering Journal,2021,411:128492. doi: 10.1016/j.cej.2021.128492
    [58] Shi F, Zhu K, Li X, et al. Porous carbon layers wrapped CoFe alloy for ultrastable Zn-air batteries exceeding 20, 000 charging-discharging cycles[J]. Journal of Energy Chemistry,2021,61:327-335. doi: 10.1016/j.jechem.2021.01.032
    [59] Zheng D, Liu W, Dai X, et al. Compressible Zn-air batteries based on metal-organic frameworks nanoflake-assembled carbon frameworks for portable motion and temperature monitors[J]. Advanced Energy and Sustainability Research,2022:2200014. doi: 10.1002/aesr.202200014
    [60] Zheng G, Xing Z, Gao X, et al. Fabrication of 2D Cu-BDC MOF and its derived porous carbon as anode material for high-performance Li/K-ion batteries[J]. Applied Surface Science,2021,559:149701. doi: 10.1016/j.apsusc.2021.149701
    [61] Liu W, Que W, Shen X, et al. Unlocking active metal site of Ti-MOF for boosted heterogeneous catalysis via a facile coordinative reconstruction[J]. Nanotechnology,2021,33(2):025401. doi: 10.1088/1361-6528/ac2dc6
    [62] Zang W, Sumboja A, Ma Y, et al. Single Co atoms anchored in porous N-doped carbon for efficient zinc-air battery cathodes[J]. ACS Catalysis,2018,8(10):8961-8969. doi: 10.1021/acscatal.8b02556
    [63] Zhao X, Shao L, Wang Z, et al. In situ atomically dispersed Fe doped metal-organic framework on reduced graphene oxide as bifunctional electrocatalyst for Zn-air batteries[J]. Journal of Materials Chemistry C,2021,9(34):11252-11260. doi: 10.1039/D1TC02729H
    [64] Zhang Y, Ma S, Li B, et al. Gecko’s feet-inspired self-peeling switchable dry/wet adhesive[J]. Chemistry of Materials,2021,33(8):2785-2795. doi: 10.1021/acs.chemmater.0c04576
    [65] Huang X, Zeng Z, Fan Z, et al. Graphene-based electrodes[J]. Advanced Materials,2012,24(45):5979-6004. doi: 10.1002/adma.201201587
    [66] Zhang Y, Fugane K, Mori T, et al. Wet chemical synthesis of nitrogen-doped graphene towards oxygen reduction electrocatalysts without high-temperature pyrolysis[J]. Journal of Materials Chemistry,2012,22:6575-6580. doi: 10.1039/c2jm00044j
    [67] Xia B Y, Mokaya R. Synthesis of ordered mesoporous carbon and nitrogen-doped carbon materials with graphitic pore walls via a simple chemical vapor deposition method[J]. Advanced Materials,2004,16(17):1553-1558. doi: 10.1002/adma.200400391
    [68] Che S, Li C, Wang C, et al. Solution-processable porous graphitic carbon from bottom-up synthesis and low-temperature graphitization[J]. Chemical Science,2021,12(24):8438-8444. doi: 10.1039/D1SC01902C
    [69] Petkovich N D, Stein A. Controlling macro- and mesostructures with hierarchical porosity through combined hard and soft templating[J]. Chemical Society Reviews,2013,42(9):3721-3739. doi: 10.1039/C2CS35308C
    [70] Usman K a S, Maina J W, Seyedin S, et al. Downsizing metal-organic frameworks by bottom-up and top-down methods[J]. NPG Asia Materials,2020,12(1):1-18. doi: 10.1038/s41427-019-0187-x
    [71] Bruno F, Sciortino A, Buscarino G, et al. A comparative study of top-down and bottom-up carbon nanodots and their interaction with mercury ions[J]. Nanomaterials,2021,11(5):1265. doi: 10.3390/nano11051265
    [72] Lin X, Liang Y, Lu Z, et al. Mechanochemistry: A Green, activation-free and top-down strategy to high-surface-area carbon materials[J]. ACS Sustainable Chemistry & Engineering,2017,5(10):8535-8540. doi: 10.1021/acssuschemeng.7b02462
    [73] Niu W, Li Z, Marcus K, et al. Surface-modified porous carbon nitride composites as highly efficient electrocatalyst for Zn-air batteries[J]. Advanced Energy Materials,2018,8(1):1701642. doi: 10.1002/aenm.201701642
    [74] Hamoudi H, Berdiyorov G R, Ariga K, et al. Bottom-up fabrication of the multi-layer carbon metal nanosheets[J]. RSC Advances,2020,10(13):7987-7993. doi: 10.1039/C9RA08177A
    [75] Li H, Zhang M, Zhou W, et al. Ultrathin 2D catalysts with N-coordinated single Co atom outside Co cluster for highly efficient Zn-air battery[J]. Chemical Engineering Journal,2021,421:129719. doi: 10.1016/j.cej.2021.129719
    [76] Lin Y, Wan H, Wu D, et al. Metal-organic framework hexagonal nanoplates: Bottom-up synthesis, topotactic transformation, and efficient oxygen evolution reaction[J]. Journal of the American Chemical Society,2020,142(16):7317-7321. doi: 10.1021/jacs.0c01916
    [77] Liu W, Yin R, Shi W, et al. Gram-scale preparation of 2D transition metal hydroxide/oxide assembled structures for oxygen evolution and Zn-air battery[J]. ACS Applied Energy Materials,2018,2(1):579-586. doi: 10.1021/acsaem.8b01613
    [78] Tang T, Jiang W J, Liu X Z, et al. Metastable rock salt oxide-mediated synthesis of high-density dual-protected M@NC for long-life rechargeable zinc-air batteries with record power density[J]. Journal of the American Chemical Society,2020,142(15):7116-7127. doi: 10.1021/jacs.0c01349
    [79] Deng J, Huang X, Gao W, et al. 3D carbon framework-supported FeSe for high-performance potassium ion batteries[J]. Sustainable Energy & Fuels,2020,4(9):4807-4813. doi: 10.1039/d0se00146e
    [80] Zhu P, Gao J, Liu S. A facile controlled synthesis of 3D cobalt nanoparticle-embedded nitrogen-doped carbon materials towards efficient bifunctional electrocatalysts for rechargeable Zn-air batteries[J]. Journal of Alloys and Compounds,2021,861:157976. doi: 10.1016/j.jallcom.2020.157976
    [81] Yuan G, Liu D, Feng X, et al. 3D carbon networks: Design and applications in sodium ion batteries[J]. ChemPlusChem,2021,86(8):1135-1161. doi: 10.1002/cplu.202100272
    [82] Zheng X, Cao X, Zeng K, et al. Cotton pad-derived large-area 3D N-doped graphene-like full carbon cathode with an O-rich functional group for flexible all solid Zn-air batteries[J]. Journal of Materials Chemistry A,2020,8(22):11202-11209. doi: 10.1039/D0TA00014K
    [83] Feng J, Wu F, Cao X, et al. Three-dimensional ordered porous carbon for energy conversion and storage applications[J]. Frontiers in Energy Research,2020,8:210. doi: 10.3389/fenrg.2020.00210
    [84] Liu W, Zheng D, Deng T, et al. Boosting electrocatalytic activity of 3d-block metal (hydro) oxides by ligand-induced conversion[J]. Angewandte Chemie-International Edition,2021,60(19):10614-10619. doi: 10.1002/anie.202100371
    [85] Wang Y, Zou Y, Tao L, et al. Rational design of three-phase interfaces for electrocatalysis[J]. Nano Research,2019,12(9):2055-2066. doi: 10.1007/s12274-019-2310-2
    [86] Liu W, Feng J, Yin R, et al. Tailoring oxygenated groups of monolithic cobalt-nitrogen-carbon frameworks for highly efficient hydrogen peroxide production in acidic media[J]. Chemical Engineering Journal,2022,430:132990. doi: 10.1016/j.cej.2021.132990
    [87] Yao W, Chen J, Wang Y, et al. Nitrogen-doped carbon composites with ordered macropores and hollow walls[J]. Angewandte Chemie-International Edition,2021,60(44):23729-23734. doi: 10.1002/anie.202108396
    [88] Du J, Zhang Y, Lv H, et al. Re-assembly: Construction of macropores in carbon sheets with high performance in supercapacitor[J]. Advanced Powder Technology,2021,32(4):1294-1299. doi: 10.1016/j.apt.2021.02.030
    [89] Cao X, Tan C, Sindoro M, et al. Hybrid micro-/nano-structures derived from metal-organic frameworks: preparation and applications in energy storage and conversion[J]. Chemical Society Reviews,2017,46(10):2660-2677. doi: 10.1039/C6CS00426A
    [90] Wu M, Liu R. Pearl necklace fibrous carbon sharing Fe-N/Fe-P dual active sites as efficient oxygen reduction catalyst in broad media and for liquid/solid-state rechargeable Zn-air battery[J]. Energy Technology,2020,8(3):1901263. doi: 10.1002/ente.201901263
    [91] Li Y, Gao J, Zhang F, et al. Hierarchical 3D macrosheets composed of interconnected in situ cobalt catalyzed nitrogen doped carbon nanotubes as superior bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries[J]. Journal of Materials Chemistry A,2018,6(32):15523-15529. doi: 10.1039/C8TA06057F
    [92] Wang W, Tang M, Zheng Z, et al. Alkaline polymer membrane-based ultrathin, flexible, and high-performance solid-state Zn-air battery[J]. Advanced Energy Materials,2019,9(14):1803628. doi: 10.1002/aenm.201803628
    [93] Hou C C, Zou L, Xu Q. A hydrangea-like superstructure of open carbon cages with hierarchical porosity and highly active metal sites[J]. Advanced Materials,2019,31(46):1904689. doi: 10.1002/adma.201904689
    [94] Wu K, Zhang L, Yuan Y, et al. An iron-decorated carbon aerogel for rechargeable flow and flexible Zn-air batteries[J]. Advanced Materials,2020,32(32):2002292. doi: 10.1002/adma.202002292
    [95] Koblischka M R, Koblischka-Veneva A. Fabrication of superconducting nanowires using the template method[J]. Nanomaterials,2021,11(8):1970. doi: 10.3390/nano11081970
    [96] Liu T, Li P, Yao N, et al. Self-sacrificial template-directed vapor-phase growth of MOF assemblies and surface vulcanization for efficient water splitting[J]. Advanced Materials,2019,31(21):1806672. doi: 10.1002/adma.201806672
    [97] Jiang H, Lee P S, Li C. 3D carbon based nanostructures for advanced supercapacitors[J]. Energy & Environmental Science,2013,6(1):41-53.
    [98] Chen G, Liu P, Liao Z, et al. Zinc-mediated template synthesis of Fe-N-C electrocatalysts with densely accessible Fe-Nx active sites for efficient oxygen reduction[J]. Advanced Materials,2020,32(8):1907399. doi: 10.1002/adma.201907399
    [99] Xiao M, Xing Z, Jin Z, et al. Preferentially engineering FeN4 edge sites onto graphitic nanosheets for highly active and durable oxygen electrocatalysis in rechargeable Zn-air batteries[J]. Advanced Materials,2020,32(49):2004900. doi: 10.1002/adma.202004900
    [100] Liu S, Han W, Cui B, et al. A novel rechargeable zinc-air battery with molten salt electrolyte[J]. Journal of Power Sources,2017,342:435-441. doi: 10.1016/j.jpowsour.2016.12.080
    [101] Yan H, Zhang X, Yang Z, et al. Insight into the electrolyte strategies for aqueous zinc ion batteries[J]. Coordination Chemistry Reviews,2022,452:214297. doi: 10.1016/j.ccr.2021.214297
    [102] Cui H, Jiao M, Chen Y-N, et al. Molten-salt-assisted synthesis of 3D holey N-doped graphene as bifunctional electrocatalysts for rechargeable Zn-air batteries[J]. Small Methods,2018,2(10):1800144. doi: 10.1002/smtd.201800144
    [103] Zhang S, Yang W, Liang Y, et al. Template-free synthesis of non-noble metal single-atom electrocatalyst with N-doped holey carbon matrix for highly efficient oxygen reduction reaction in zinc-air batteries[J]. Applied Catalysis B: Environmental,2021,285:119780. doi: 10.1016/j.apcatb.2020.119780
    [104] Ping J, Wang Y, Lu Q, et al. Self-assembly of single-layer CoAl-layered double hydroxide nanosheets on 3D graphene network used as highly efficient electrocatalyst for oxygen evolution reaction[J]. Advanced materials,2016,28(35):7640-7645. doi: 10.1002/adma.201601019
    [105] Cai S, Wang R, Yourey W M, et al. An efficient bifunctional electrocatalyst derived from layer-by-layer self-assembly of a three-dimensional porous Co-N-C@graphene[J]. Science Bulletin,2019,64(14):968-975. doi: 10.1016/j.scib.2019.05.020
    [106] Li Z, Yang J, Ge X, et al. Self-assembly of colloidal MOFs derived yolk-shelled microcages as flexible air cathode for rechargeable Zn-air batteries[J]. Nano Energy,2021,89:106314. doi: 10.1016/j.nanoen.2021.106314
    [107] Sun P X, Cao Z, Zeng Y X, et al. Formation of super-assembled TiOx/Zn/N-doped carbon inverse opal towards dendrite-free Zn anodes[J]. Angewandte Chemie-International Edition,2021,61:202115649. doi: 10.1002/anie.202115649
    [108] E. Davari, D. G. Ivey. Bifunctional electrocatalysts for Zn-air batteries[J]. Sustainable Energy Fuels,2018,2:39-67. doi: 10.1039/C7SE00413C
    [109] Yan Y, Zhang Y, Wu Y, et al. A lasagna-inspired nanoscale ZnO anode design for high-energy rechargeable aqueous batteries[J]. ACS Applied Energy Materials,2018,1(11):6345-6351. doi: 10.1021/acsaem.8b01321
    [110] Zhang Y, Wu Y, You W, et al. Deeply rechargeable and hydrogen-evolution-suppressing zinc anode in alkaline aqueous electrolyte[J]. Nano Letters,2020,20(6):4700-4707. doi: 10.1021/acs.nanolett.0c01776
    [111] Zhou Z, Zhang Y, Chen P, et al. Graphene oxide-modified zinc anode for rechargeable aqueous batteries[J]. Chemical Engineering Science,2019,194:142-147. doi: 10.1016/j.ces.2018.06.048
    [112] Zheng J, Zhao Q, Tang T, et al. Reversible epitaxial electrodeposition of metals in battery anodes[J]. Science,2019,366:645-648. doi: 10.1126/science.aax6873
    [113] Li Z, Wu L, Dong S, et al. Pencil drawing stable interface for reversible and durable aqueous zinc-ion batteries[J]. Advanced Functional Materials,2020,31(4):2006495. doi: 10.1002/adfm.202006495
    [114] Sun W, Ma M, Zhu M, et al. Chemical buffer layer enabled highly reversible Zn anode for deeply discharging and long-life Zn-air battery[J]. Small,2022,18(9):2106604. doi: 10.1002/smll.202106604
    [115] Luo W, Cheng S, Wu M, et al. A review of advanced separators for rechargeable batteries[J]. Journal of Power Sources,2021,509:230372. doi: 10.1016/j.jpowsour.2021.230372
    [116] Huang X, He R, Li M, et al. Functionalized separator for next-generation batteries[J]. Materials Today,2020,41:143-155. doi: 10.1016/j.mattod.2020.07.015
    [117] Zhang J, Fu J, Song X, et al. Laminated cross-linked nanocellulose/graphene oxide electrolyte for flexible rechargeable zinc-air batteries[J]. Advanced Energy Materials,2016,6(14):1600476. doi: 10.1002/aenm.201600476
    [118] Zarrin H, Sy S, Fu J, et al. Molecular functionalization of graphene oxide for next-generation wearable electronics[J]. ACS Applied Materials & Interfaces,2016,8(38):25428-25437. doi: 10.1021/acsami.6b06769
  • 加载中
图(10)
计量
  • 文章访问数:  753
  • HTML全文浏览量:  412
  • PDF下载量:  169
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-20
  • 修回日期:  2022-06-15
  • 网络出版日期:  2022-06-20
  • 刊出日期:  2022-07-20

目录

    /

    返回文章
    返回