留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Recent advances in carbon materials for flexible zinc ion batteries

WU Li-sha ZHANG Ming-hui XU Wen DONG Yan-feng

武丽莎, 张明慧, 徐文, 董琰峰. 炭材料在柔性锌离子电池中的研究进展. 新型炭材料(中英文), 2022, 37(5): 827-851. doi: 10.1016/S1872-5805(22)60628-0
引用本文: 武丽莎, 张明慧, 徐文, 董琰峰. 炭材料在柔性锌离子电池中的研究进展. 新型炭材料(中英文), 2022, 37(5): 827-851. doi: 10.1016/S1872-5805(22)60628-0
WU Li-sha, ZHANG Ming-hui, XU Wen, DONG Yan-feng. Recent advances in carbon materials for flexible zinc ion batteries. New Carbon Mater., 2022, 37(5): 827-851. doi: 10.1016/S1872-5805(22)60628-0
Citation: WU Li-sha, ZHANG Ming-hui, XU Wen, DONG Yan-feng. Recent advances in carbon materials for flexible zinc ion batteries. New Carbon Mater., 2022, 37(5): 827-851. doi: 10.1016/S1872-5805(22)60628-0

炭材料在柔性锌离子电池中的研究进展

doi: 10.1016/S1872-5805(22)60628-0
基金项目: 辽宁省“兴辽英才计划”青年拔尖人才(XLYC2007129);辽宁省自然科学基金(2020-MS-095);中央高校基本科研业务费(N2105008);催化基础国家重点实验室基金(N-21-03)
详细信息
    通讯作者:

    董琰峰,副教授. E-mail:dongyanfeng@mail.neu.edu.cn

  • 中图分类号: TQ127.1+1

Recent advances in carbon materials for flexible zinc ion batteries

Funds: This work was financially supported by LiaoNing Revitalization Talents Program (XLYC2007129), the Natural Science Foundation of Liaoning Province (2020-MS-095), the Fundamental Research Funds for the Central Universities of China (N2105008), and the fund of the State Key Laboratory of Catalysis in DICP (N-21-03)
More Information
  • 摘要: 近年来,随着智能可穿戴设备市场的不断增长,柔性储能器件的设计和开发得到了快速发展。水系锌离子电池(ZIBs)具有成本低、高安全等优势,得到了广泛研究。炭材料具有质轻、高导电与柔性等特点,在构筑高性能柔性锌离子电池(FZIBs)方面具有诸多优势。本文详细总结了炭材料(碳纳米管、炭纤维、石墨烯)在一维线状、二维平面、三维三明治构型FZIBs中的研究进展,着重强调了炭材料构筑FZIBs的策略,系统归纳了炭材料在正极、负极和隔膜中的角色,重点强调了炭材料对FZIBs的性能增强作用。最后,简要讨论了先进炭材料在下一代柔性锌离子电池中的挑战和前景。
  • FIG. 1812.  FIG. 1812.

    FIG. 1812..  FIG. 1812.

    Figure  1.  Schematic illustration of various carbon materials for FZIBs.

    Figure  2.  Configurations and integration of FZIBs. (a) 1D coaxial battery. (b) 1D twisted battery. (c) 1D stretchable battery. (d) 1D cable-shaped batteries could be woven into fabrics. (e) 2D planar battery. (f) Three planar batteries could be connected in parallel for practical applications. (g) 3D sandwiched battery. (h) Three sandwiched batteries could be connected in series for practical applications.

    Figure  3.  (a) Cross-sectional scanning electron microscope (SEM) image of VO2 (B)-MWCNT cathode. (b) Specific capacity and Coulombic efficiency of FZIBs under various bending angles. (c) Galvanostatic charge/discharge (GCD) curves of FZIBs at different temperatures[25]. Reprinted with permission by copyright 2019, Wiley. (d, e) SEM images of the MnO2/CNF-CNT fiber cathode. (f) Ragone plot of the 1D FZIBs based on the MnO2/CNF-CNT cathode in comparison with previously reported fiber-shaped energy storage devices. (g) Flexible fiber electrodes under various deformations. (h) Digital photograph showing that FZIBs could be woven into textile for potential practical applications[40]. Reprinted with permission by copyright 2022, Elsevier.

    Figure  4.  (a) SEM image of MnO2/rGO composite. (b) Digital photograph exhibiting flexible MnO2/rGO membrane to bear various deformations such as bending, rolling, and folding. (c) Cycling performance of FZIB under different deformations[49]. Reprinted with permission by copyright 2020, Wiley. (d) A schematic of the preparation of 2D A-V2O5/G heterostructures. (e) SEM image of A-V2O5/G heterostructures. (f) Digital photograph of the 2D planar FZIB. (g) Schematic illustration of three FZIBs connected in series or parallel. (h, i) GCD curves of FZIBs connected (h) in series or (i) in parallel from 1 to 3 batteries[42]. Reprinted with permission by copyright 2020, Wiley.

    Figure  5.  (a) Schematic illustrating the MnO2/CNT foam with reversible chemical conversion and hierarchical structure favoring mass/electron transport. (b) Pore size distribution of the MnO2/CNT foam. (c) The capacity and average voltage of a ZIB assembled with MnO2/CNT foam cathode in comparison with previously reported works on ZIBs. (d) Cycling stability of the constructed 3D sandwiched FZIB[58]. Reprinted with permission by copyright 2021, Wiley. (e) SEM image of a 1D fiber-shaped FZIB. (f) Digital photographs of a fiber-shaped FZIB woven into a glove at different bending states, and (g) corresponding GCD curves of the FZIB at 5.0 A cm−3[53]. Reprinted with permission by copyright 2020, ACS.

    Figure  6.  (a) Transmission electron microscopy (TEM) image of Al2O3@VSe2 NSs@N-CNF. (b) Cycling stability of a FZIB at 5.0 A g−1. (c) The FZIBs could power an integrated soft robot[59]. Reprinted with permission by copyright 2022, Elsevier. (d) Schematic showing the fabrication of a flexible N-CNS@MnO2 cathode. (e) SEM and (f) TEM images of N-CNSs@MnO2. (g) Ragone plot of a N-CNS@MnO2 based FZIB in comparison with previously reported flexible energy storage devices. (h) Digital images showing that N-CNSs@MnO2 based ZIBs could power a table lamp and a light signboard[64]. Reprinted with permission by copyright 2020, Elsevier.

    Figure  7.  (a) Schematic illustration of Zn deposition on CC and CNT substrates. (b) Cycling performance of Zn/CC and Zn/CNT anode based symmetrical batteries at 2 mA cm−2 and 2 mAh cm−2. (c) Long-term cycling stability of a Zn/CNT//MnO2 battery at 20 mA cm−2. (d) Capacity retention of the flexible Zn/CNT//MnO2 battery under different deformation states[86]. Reprinted with permission by copyright 2019, Wiley.

    Figure  8.  (a) Schematic illustration showing the preparation of MGA. (b) Optical image of lightweight MGA. (c) SEM image of MGA. (d) SEM image of MGA after plating for 5 mAh cm−2. (e) Cycling stability of a 3D LiMn2O4//MGA@Zn battery under different folded conditions. (f) SEM images of MGA after folding once and releasing. (g) SEM images of MGA after folding twice and releasing[21]. Reprinted with permission by copyright 2021, Wiley.

    Figure  9.  (a) A Schematic showing the synthesis of a Janus separator. (b) SEM image of vertical graphene carpets on the Janus separator. (c) Cycling stability of Zn//Zn symmetrical batteries assembled with the Janus separator and pristine separator at 0.5 mA cm−2 for 0.5 mAh cm−2. (d) Galvanostatic charge/discharge profiles of a Zn//V2O5 cell at 1 mA cm−2 at various bending angles[96]. Reprinted with permission by copyright 2020, Wiley. (e) SEM image of Zn anode in a CG separator based Zn//Zn battery after cycling at 2 mA cm–2. (f) Cycling performance of Zn//Zn symmetrical batteries with CG and cellulose separators at 2 mA cm−2 and 1 mAh cm−2[97]. Reprinted with permission by copyright 2021, Wiley.

    Table  1.   A summary of carbon based cathodes for FZIBs.

    Role of carbonsBattery
    configu
    rationsns
    CathodeAnodeElectrolyteVoltage
    window
    CapacityCapacity
    retention
    Energy/
    power
    density
    FlexibilityRef.
    Conductive materials 1D cable-shaped MnO2/CNFs-CNTs Zn/CNFs-CNTs 2 M ZnSO4 +
    0.1 M MnSO4
    0.8–1.9 V 281.5 mAh g–1
    0.25 A g–1
    65.7% (400 cycles) 47.3 Wh kg–1
    42.2 W kg–1 (Eelectrode)
    Bent, looped,
    twisted, typed
    [40]
    2D planar CNT@MnO2 Zinc powder 1 M ZnSO4 +
    0.1 M MnSO4
    0.8–1.8 V 63 μAh cm−2
    0.4 mA cm−2
    94.6% (87 cycles) 404.3 Wh kg−1
    135.2 W kg−1
    Bent [41]
    2D planar A-V2O5/G Zn powder 3 M ZnSO4 0.2–1.8 V 20 mAh cm−3
    1 mA cm−2
    80% (3500 cycles) 21 mWh cm−3
    526 mW cm−3
    Bent, twisted [42]
    2D planar VO2 (B)-MWCNTs Zinc nanoflakes 2 M Zn(CF3SO3)2 0–2 V 314.7 µAh cm−2
    0.14 mA cm−2
    71.8% (200 cycles) 188.8 µWh cm−2
    0.09 mW cm−2
    Bent [25]
    3D sandwiched CuV2O6/RCNTs Zn foil 2/3 M Zn(CF3SO3)2 0.3–1.5 V 353 mAh g−1
    0.1 A g−1
    61.5% (1400 cycles) 353 Wh kg−1
    90 W kg−1
    Bent [43]
    3D sandwiched H0.08MnO2·0.7H2O/
    MWCNT membrane
    Zn foil 2 M ZnSO4 +
    0.2 M MnSO4
    1.0–1.9 V 276.3 mAh g−1
    0.2 A g−1
    80.8% (1000 cycles) 368.3 Wh kg−1
    300 W kg−1 (Ematerial)
    Bent [44]
    3D sandwiched KVO/SWCNT Zn foils 4 M Zn(CF3SO3)2 0.3–1.3 V 379 mAh g−1
    0.1 A g−1
    91% (10000 cycles) Bent [45]
    3D sandwiched PANI/SWCNTs Zn/SWCNTs-rGO PVA-Zn(CF3SO3)2 0.5–1.5 V 167.6 mAh g−1
    0.1 A g−1
    97.3% (1000 cycles) Bent, stretchable [46]
    3D sandwiched a-MnO2@CNT foams Zn@CNT 2 M ZnSO4/
    0.2 M MnSO4
    1.0–1.8 V 308.5 mAh g−1
    0.97 C
    100% (1000 cycles) Bent [47]
    3D sandwiched h-CNT/PANI Zn foil 2 M ZnSO4 0.5–1.5 V 97 mAh g−1
    0.1 A g−1
    105.8% (1000 cycles) 104 Wh kg−1/
    8.3 kW kg−1
    Bent [48]
    3D sandwiched MnO2/rGO Zn foil 2.0 M ZnSO4 +
    0.1 M MnSO4
    1.0–1.9 V 317 mAh g−1
    0.1 A g−1
    78% (2000 cycles) 436 Wh kg−1
    (Ecathode)
    Bent, folded [49]
    3D sandwiched VO2/rGO Zn foil 3M Zn(CF3SO3)2 0.3–1.3 V 276 mAh g−1
    0.1 A g−1
    99% (1000 cycles) 65 Wh kg−1
    7.8 kW kg−1
    Bent [50]
    3D sandwiched MnO/G Zn foil 2 M ZnSO4 +
    0.1 M MnSO4
    1–1.85 V 398.5 mAh g−1
    0.1 A g−1
    70% (2000 cycles) Bent [51]
    Current collectors 1D cable-shaped MnO2@CNT Zn wire 1.5 M LiCl-2M
    ZnCl2-PVA
    1.0–1.8 V 290 mAh g−1
    0.1 A g−1
    75% (300 cycles) 360 Wh Kg−1
    100 W Kg−1 (Ematerial)
    Folded [52]
    1D cable- shaped CNT-stitched ZVO NSs@OCNT Zn NSs@CNTs
    fiber
    CMC/ZnSO4 polymer
    gel electrolyte
    0.2–1.8 V 114 mAh cm−3
    0.1 A cm−3
    88.6% (2000 cycles) 71.6 mWh cm−3
    0.071 W cm−3 (Edevice)
    Bent [53]
    1D cable- shaped Co3O4 NSs@CNTF Zn NSs@CNTF 2 M ZnSO4 +
    0.0005 M CoSO4
    0.8–2.1 V 158.70 mAh g−1
    1 A g−1
    97.27% (10000 cycles) Bent [54]
    1D cable- shaped ZnHCF@CNTs Zn nanosheet
    arrays on CNTFs
    ZnSO4-CMC gel 1.0–2.1 V 100.2 mAh cm−3
    0.1 A cm−3
    91.8% (200 cycles) 195.4 mWh cm−3
    0.2 W cm−3
    Bent [55]
    3D sandwiched CNT@MnO2 Zn foil 2 M ZnSO4 +
    0.2 M MnSO4
    1–1.85 V 292.7 mAh g−1
    0.2 mA cm−2
    100% (1000 cycles) 16.5 mWh cm−3
    10.3 mW cm−3
    Bent [56]
    3D sandwiched MnO2/CNT zinc nanosheet
    based textile
    ZnSO4+MnSO4 1.0–1.8 V 138.8 mAh g–1
    1 C
    91% (1000 cycles) 12 mWh cm−3
    13 mW cm−3 (Edevice)
    Bent [57]
    3D sandwiched MnO2/CNT foam Zn foil 2 M ZnSO4 +
    0.005 M MnSO4
    1.0–2.4 V 0.332 mAh cm−2
    2 mA cm−2
    100% (16000 cycles) 602 Wh kg−1
    (Ematerial)
    [58]
    3D sandwiched Al2O3@VSe2 NSs@N-CNFs Zn NSs@CNT ZnSO4 0.3–1.5 V 495.4 mAh g–1
    0.05 A g−1
    86.2% (2500 cycles) 362.5 Wh kg−1
    44 W kg−1
    Bent [59]
    3D sandwiched VO2 (B)@CFS Zn foil 1 M ZnSO4 0.2–1.2 V 386.2 mAh g−1
    0.2 A g−1
    65.5% (1000 cycles) Bent [60]
    3D sandwiched VS2/CC Zn/CC PVA-Zn/Mn hydrogel 0.4–1.0 V 175 mAh g−1
    0.2 A g−1
    70.3% (40 cycles) Bent [61]
    3D sandwiched ZnVOH/CC Zn/CC 3 M Zn(CF3SO3)2 0.2–1.4 V 337 mAh g−1
    1.0 A g−1
    94.6% (5000 cycles) Rolled, folded,
    punched
    [62]
    3D sandwiched Od-Mn3O4@C NA/CC Zn foil 2 M ZnSO4 +
    0.2 M MnSO4
    0.2–1.8 V 396.2 mAh g−1
    0.2 A g−1
    95.7% (12000 cycles) 537.5 Wh kg−1
    268.75 W kg−1
    [63]
    3D sandwiched N-CNSs@MnO2 N-CNSs@Zn 2 M ZnSO4 +
    0.2 M MnSO4
    1.0–1.8 V 271.2 mAh g−1
    0.5 A g−1
    76.5% (500 cycles) 352.5 Wh kg−1
    542.4 W kg−1
    Bent, twisted [64]
    3D sandwiched MnO2/CC Zn foil 2 M ZnSO4 +
    0.1 M MnSO4
    0.8–1.8 V 212.8 mAh g−1
    1 A g−1
    124% (300 cycles) Bent [65]
    3D sandwiched C-MnO2@CC Zn/CC 2 M ZnSO4 +
    0.2 M MnSO4
    0.8–1.9 V 1.3 mAh cm−2
    1.0 A cm−2
    86.5% (10000 cycles) 1.34 mWh cm−2
    2.95 mW cm−2
    Bent, twisted [66]
    3D sandwiched MnO2/CF Zn/CF PVA/ZnCl2-MnSO4 0.8–2.0 V 145.9 mAh g−1
    0.1 A g−1
    88.3% (100 cycles) 181.5 Wh kg−1
    0.31 kW kg−1 (Ematerial)
    Tensile, bent, compressed [67]
    3D sandwiched CuMO Zn foil 2 M ZnSO4 +
    0.2 M MnSO4
    0.8–1.9 V 398.2 mAh g−1
    0.1 A g−1
    90.1% (700 cycles) 156 Wh kg−1
    6250 W kg−1
    Bent [27]
    3D sandwiched FSM@FGF Zn metal 1/2 M ZnSO4 1.0–1.9 V 440.1 mAh g−1
    0.1 A g−1
    82.7% (300 cycles) 396 Wh kg−1
    90 W kg−1
    Folded in water [68]
    Note: M: mol L−1
    下载: 导出CSV

    Table  2.   A summary of carbon based anodes for FZIBs.

    Role of carbonsDevice configurationsAnodeCathodeElectrolyte Voltage
    range
    CapacityCapacity retentionEnergy/power densityFlexibilityRef.
    Current
    collectors
    for Zn
    2D planarZn microparticlesγ-MnO22 M ZnSO4 +
    0.5 M MnSO4
    0.9–1.8 V19.3 mAh cm−3
    at 7.5 mA cm−3
    83.9%
    (1300 cycles)
    17.3 mWh cm−3
    150 mW cm−3
    (Eelectrode)
    Bent[85]
    3D sandwichedZn/CNTCNT-MnOx@ poly
    (3,4-ethylenedio-
    xythiophene)
    (PEDOT)
    PVA/LiCl-
    ZnCl2-
    MnSO4 gel
    1.0–1.8 V289 mAh g−1
    at 2 mA cm−2
    88.7%
    (1000 cycles)
    126 Wh kg−1
    (Ematerial)
    Bent, twisted[86]
    3D sandwichedZn@Cu@ACCMnO2@ACC1 M ZnSO40.5–1.9 V291.79 mAh g−1
    at 0.5 A g−1
    94.8%
    (1000 cycles)
    Bent[87]
    3D sandwichedZn/CCPANI3 M ZnCl20.7–1.7 V1.24 mAh cm−2
    at 0.2 mA cm−2
    94.83%
    (1500 cycles)
    1.31 mWh cm−2
    0.29 mW cm−2
    Bent[88]
    3D sandwichedZn@N-VG@CCMnO2@N-VG@CCPVA/
    Zn(CF3SO3)2
    0.8–1.8 V283.3 mAh g−1
    at 1.0 A g−1
    80%
    (300 cycles)
    371.24 Wh kg−1
    0.474 kW kg−1
    (Ematerial)
    Bent, twisted[89]
    Host
    materials
    for Zn
    3D sandwichedZCNCNT/MnO22 M ZnSO4 +
    0.2 M MnSO4
    1–1.85 V198.8 mAh g−1
    at 0.2 A g−1
    107.0%
    (1000 cycles)
    Bent[90]
    3D sandwichedZn particles/CNTs/
    PVDF-HFP
    MnO22 M ZnSO4 +
    0.1 M MnSO4
    1.0–1.9 V318.5 mAh g−1
    at 0.3 A g−1
    65%
    (1000 cycles)
    430.1 Wh kg−1/
    4.02 kW kg−1
    Bent[91]
    Note: M: mol L−1
    下载: 导出CSV
  • [1] Dong H, Li J, Guo J, et al. Insights on flexible zinc-ion batteries from lab research to commercialization[J]. Advanced Materials,2021,33(20):2007548. doi: 10.1002/adma.202007548
    [2] Li Y, Fu J, Zhong C, et al. Recent advances in flexible zinc-based rechargeable batteries[J]. Advanced Energy Materials,2019,9(1):1802605. doi: 10.1002/aenm.201802605
    [3] Zhang T, Tang Y, Guo S, et al. Fundamentals and perspectives in developing zinc-ion battery electrolytes: a comprehensive review[J]. Energy & Environmental Science,2020,13:4625-4665.
    [4] Olbasa B W, Fenta F W, Chiu S-F, et al. High-rate and long-cycle stability with a dendrite-free zinc anode in an aqueous Zn-ion battery using concentrated electrolytes[J]. ACS Applied Energy Materials,2020,3(5):4499-4508. doi: 10.1021/acsaem.0c00183
    [5] Li Y, Xie H, Wu G, et al. Study on performance of spinel LiMn2O4 derived from a high reactive Mn2O3 [J]. Chinese Journal of Rare Metals, 2020, 44(6): 616-621.
    [6] Wu L, Dong Y. Recent progress of carbon nanomaterials for high-performance cathodes and anodes in aqueous zinc ion batteries[J]. Energy Storage Materials,2021,41:715-737. doi: 10.1016/j.ensm.2021.07.004
    [7] Blanc L E, Kundu D, Nazar L F. Scientific challenges for the implementation of Zn-ion batteries[J]. Joule,2020,4(4):771-799. doi: 10.1016/j.joule.2020.03.002
    [8] Tang B, Shan L, Liang S, et al. Issues and opportunities facing aqueous zinc-ion batteries[J]. Energy & Environmental Science,2019,12(11):3288-3304.
    [9] Zhang N, Chen X, Yu M, et al. Materials chemistry for rechargeable zinc-ion batteries[J]. Chemical Society Reviews,2020,49(13):4203-4219. doi: 10.1039/C9CS00349E
    [10] Jia X, Liu C, Neale Z G, et al. Active materials for aqueous zinc ion batteries: synthesis, crystal structure, morphology, and electrochemistry[J]. Chemical Reviews,2020,120(15):7795-7866. doi: 10.1021/acs.chemrev.9b00628
    [11] Li H, Tang Z, Liu Z, et al. Evaluating flexibility and wearability of flexible energy storage devices[J]. Joule,2019,3(3):613-619. doi: 10.1016/j.joule.2019.01.013
    [12] Kong L, Tang C, Peng H J, et al. Advanced energy materials for flexible batteries in energy storage: a review[J]. SmartMat,2020,1(1):1-35.
    [13] Zhang X, Jian W, Zhao L, et al. Direct carbonization of sodium lignosulfonate through self-template strategies for the synthesis of porous carbons toward supercapacitor applications[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2022,636:128191. doi: 10.1016/j.colsurfa.2021.128191
    [14] Zhang W, Jian W, Yin J, et al. A comprehensive green utilization strategy of lignocellulose from rice husk for the fabrication of high-rate electrochemical zinc ion capacitors[J]. Journal of Cleaner Production,2021,327:129522. doi: 10.1016/j.jclepro.2021.129522
    [15] Yin J, Zhang W, Alhebshi N A, et al. Electrochemical zinc ion capacitors: fundamentals, materials, and systems[J]. Advanced Energy Materials,2021,11(21):2100201. doi: 10.1002/aenm.202100201
    [16] Wen F, Zhang W, Jian W, et al. Sustainable production of lignin-derived porous carbons for high-voltage electrochemical capacitors[J]. Chemical Engineering Science,2022,255:117672. doi: 10.1016/j.ces.2022.117672
    [17] Chen Y, Xi B, Huang M, et al. Defect-selectivity and "order-in-disorder" engineering in carbon for durable and fast potassium storage[J]. Advanced Materials,2022,34(7):2108621. doi: 10.1002/adma.202108621
    [18] Geng C, Chen Y, Shi L, et al. Design of active sites in carbon materials for electrochemical potassium storage[J]. New Carbon Materials,2022,37(3):461-483. doi: 10.1016/S1872-5805(22)60612-7
    [19] Chen Y, Shi L, Yuan Q, et al. Crystallization-induced morphological tuning toward denim-like graphene nanosheets in a KCl-copolymer solution[J]. ACS Nano,2018,12(4):4019-4024. doi: 10.1021/acsnano.8b01708
    [20] Xu G, Liu X, Huang S, et al. Freestanding, hierarchical, and porous bilayered NaxV2O5·nH2O/rGO/CNT composites as high-performance cathode materials for nonaqueous K-ion batteries and aqueous zinc-ion batteries[J]. ACS Applied Materials & Interfaces,2020,12(1):706-716.
    [21] Zhou J, Xie M, Wu F, et al. Encapsulation of metallic Zn in a hybrid MXene/graphene aerogel as a stable Zn anode for foldable Zn-ion batteries[J]. Advanced Materials,2022,34:2106897. doi: 10.1002/adma.202106897
    [22] Zhu Y, Yang X, Liu, et al. Flexible 1D batteries: recent progress and prospects[J]. Advanced Materials,2020,32(5):1901961. doi: 10.1002/adma.201901961
    [23] Liu Y, Wang J, Zeng Y, et al. Interfacial engineering coupled valence tuning of MoO3 cathode for high-capacity and high-rate fiber-shaped zinc-ion batteries[J]. Small,2020,16(11):1907458. doi: 10.1002/smll.201907458
    [24] Shi X, Das P, Wu Z S. Digital microscale electrochemical energy storage devices for a fully connected and intelligent world[J]. ACS Energy Letters,2021,7(1):267-281.
    [25] Shi J, Wang S, Chen X, et al. An ultrahigh energy density quasi-solid-state zinc ion microbattery with excellent flexibility and thermostability[J]. Advanced Energy Materials,2019,9(37):1901957. doi: 10.1002/aenm.201901957
    [26] Yu P, Zeng Y, Zhang H, et al. Flexible Zn-ion batteries: recent progresses and challenges[J]. Small,2019,15(7):1804760. doi: 10.1002/smll.201804760
    [27] Zhang R, Liang P, Yang H, et al. Manipulating intercalation-extraction mechanisms in structurally modulated δ-MnO2 nanowires for high-performance aqueous zinc-ion batteries[J]. Chemical Engineering Journal,2022,433:133687. doi: 10.1016/j.cej.2021.133687
    [28] Sun H, Zhang Y, Zhang J, et al. Energy harvesting and storage in 1D devices[J]. Nature Reviews Materials,2017,2(6):1-12.
    [29] He J, Lu C, Jiang H, et al. Scalable production of high-performing woven lithium-ion fibre batteries[J]. Nature,2021,597(7874):57-63. doi: 10.1038/s41586-021-03772-0
    [30] Shi X, Zuo Y, Zhai P, et al. Large-area display textiles integrated with functional systems[J]. Nature,2021,591(7849):240-245. doi: 10.1038/s41586-021-03295-8
    [31] Liao M, Wang C, Hong Y, et al. Industrial scale production of fibre batteries by a solution-extrusion method[J]. Nature Nanotechnology,2022,17(4):372-377. doi: 10.1038/s41565-021-01062-4
    [32] Xiao X, Xiao X, Zhou Y, et al. An ultrathin rechargeable solid-state zinc ion fiber battery for electronic textiles[J]. Science Advances,2021,7(49):eabl3742. doi: 10.1126/sciadv.abl3742
    [33] Sumboja A, Liu J, Zheng W G, et al. Electrochemical energy storage devices for wearable technology: a rationale for materials selection and cell design[J]. Chemical Society Reviews,2018,47(15):5919-5945. doi: 10.1039/C8CS00237A
    [34] Wang Z, Li Y, Wang J, et al. Recent progress of flexible aqueous multivalent ion batteries[J]. Carbon Energy,2022,4:411-445. doi: 10.1002/cey2.178
    [35] Bu F, Zhou W, Xu Y, et al. Recent developments of advanced micro-supercapacitors: design, fabrication and applications[J]. npj Flexible Electronics,2020,4(1):1-16. doi: 10.1038/s41528-020-0064-2
    [36] Zheng S, Wang H, Das P, et al. Multitasking MXene inks enable high-performance printable microelectrochemical energy storage devices for all-flexible self-powered integrated systems[J]. Advanced Materials,2021,33(10):2005449. doi: 10.1002/adma.202005449
    [37] Qu J, Zhang L, Song X, et al. Research progress of copper indium gallium selenide thin film solar cells. Chinese Journal of Rare Metals. 2020, 44(3): 313-327.
    [38] Zhang Y, Zheng S, Zhou F, et al. Multi-layer printable lithium ion micro-batteries with remarkable areal energy density and flexibility for wearable smart electronics[J]. Small,2021,18:2104506.
    [39] Ma J, Zheng S, Cao Y, et al. Aqueous MXene/PH1000 hybrid inks for inkjet-printing micro-supercapacitors with unprecedented volumetric capacitance and modular self-powered microelectronics[J]. Advanced Energy Materials,2021,11(23):2100746. doi: 10.1002/aenm.202100746
    [40] Gao T, Yan G, Yang X, et al. Wet spinning of fiber-shaped flexible Zn-ion batteries toward wearable energy storage[J]. Journal of Energy Chemistry,2022,71:192-200. doi: 10.1016/j.jechem.2022.02.040
    [41] Ren Y, Meng F, Zhang S, et al. CNT@MnO2 composite ink toward a flexible 3D printed micro-zinc-ion battery[J]. Carbon Energy,2022,4:446-457. doi: 10.1002/cey2.177
    [42] Wang X, Li Y, Wang S, et al. 2D amorphous V2O5/graphene heterostructures for high-safety aqueous Zn-ion batteries with unprecedented capacity and ultrahigh rate capability[J]. Advanced Energy Materials,2020,10:2000081. doi: 10.1002/aenm.202000081
    [43] Song J, Wang W, Fang Y, et al. Freestanding CuV2O6/carbon nanotube composite films for flexible aqueous zinc-ion batteries[J]. Applied Surface Science,2022,578:152053. doi: 10.1016/j.apsusc.2021.152053
    [44] Wang Y, Ye F, Wu Z, et al. Macroporous, freestanding birnessite H0.08MnO2·0.7H2O nanobelts/carbon nanotube membranes for wearable zinc-ion batteries with superior rate capability and cyclability[J]. ACS Applied Energy Materials,2021,4(4):4138-4149. doi: 10.1021/acsaem.1c00464
    [45] Wan F, Huang S, Cao H, et al. Freestanding potassium vanadate/carbon nanotube films for ultralong-life aqueous zinc-ion batteries[J]. ACS Nano,2020,14(6):6752-6760. doi: 10.1021/acsnano.9b10214
    [46] Yao M, Yuan Z, Li S, et al. Scalable assembly of flexible ultrathin all-in-one zinc-ion batteries with highly stretchable, editable, and customizable functions[J]. Advanced Materials,2021,33(10):2008140. doi: 10.1002/adma.202008140
    [47] Bi S, Wu Y, Cao A, et al. Free-standing three-dimensional carbon nanotubes/amorphous MnO2 cathodes for aqueous zinc-ion batteries with superior rate performance[J]. Materials Today Energy,2020,18:100548. doi: 10.1016/j.mtener.2020.100548
    [48] Li X, Li Y, Xie S, et al. Zinc-based energy storage with functionalized carbon nanotube/polyaniline nanocomposite cathodes[J]. Chemical Engineering Journal,2022,427:131799. doi: 10.1016/j.cej.2021.131799
    [49] Wang J, Wang J G, Liu H, et al. A highly flexible and lightweight MnO2/graphene membrane for superior zinc-ion batteries[J]. Advanced Functional Materials,2021,31:2007397. doi: 10.1002/adfm.202007397
    [50] Dai X, Wan F, Zhang L, et al. Freestanding graphene/VO2 composite films for highly stable aqueous Zn-ion batteries with superior rate performance[J]. Energy Storage Materials,2019,17:143-150. doi: 10.1016/j.ensm.2018.07.022
    [51] Guo Y, Zhao Z, Zhang J, et al. High-performance zinc-ion battery cathode enabled by deficient manganese monoxide/graphene heterostructures[J]. Electrochimica Acta,2022,411:140045. doi: 10.1016/j.electacta.2022.140045
    [52] Wang K, Zhang X, Han J, et al. High-performance cable-type flexible rechargeable Zn battery based on MnO2@CNT fiber microelectrode[J]. ACS Applied Materials & Interfaces,2018,10(29):24573-24582.
    [53] Pan Z, Yang J, Yang J, et al. Stitching of Zn3(OH)2V2O7·2H2O 2D nanosheets by 1D carbon nanotubes boosts ultrahigh rate for wearable quasi-solid-state zinc-ion batteries[J]. ACS Nano,2020,14(1):842-853. doi: 10.1021/acsnano.9b07956
    [54] Lu Y, Zhang H, Liu H, et al. Electrolyte dynamics engineering for flexible fiber-shaped aqueous zinc-ion battery with ultralong stability[J]. Nano Letters,2021,21(22):9651-9660. doi: 10.1021/acs.nanolett.1c03455
    [55] Zhang Q, Li C, Li Q, et al. Flexible and high-voltage coaxial-fiber aqueous rechargeable zinc-ion battery[J]. Nano Letters,2019,19(6):4035-4042. doi: 10.1021/acs.nanolett.9b01403
    [56] Huang A, Chen J, Zhou W, et al. Electrodeposition of MnO2 nanoflakes onto carbon nanotube film towards high-performance flexible quasi-solid-state Zn-MnO2 batteries[J]. Journal of Electroanalytical Chemistry,2020,873:114392. doi: 10.1016/j.jelechem.2020.114392
    [57] Zhao T, Zhang G, Zhou F, et al. Toward tailorable Zn-ion textile batteries with high energy density and ultrafast capability: building high-performance textile electrode in 3D hierarchical branched design[J]. Small,2018,14(36):1802320. doi: 10.1002/smll.201802320
    [58] Shen X, Wang X, Zhou Y, et al. Highly reversible aqueous Zn-MnO2 battery by supplementing Mn2+-mediated MnO2 deposition and dissolution[J]. Advanced Functional Materials,2021,31(27):2101579. doi: 10.1002/adfm.202101579
    [59] Yang J, Yang H, Ye C, et al. Conformal surface-nanocoating strategy to boost high-performance film cathodes for flexible zinc-ion batteries as an amphibious soft robot[J]. Energy Storage Materials,2022,46:472-481. doi: 10.1016/j.ensm.2022.01.014
    [60] Li X, Yang L, Mi H, et al. VO2(B)@carbon fiber sheet as a binder-free flexible cathode for aqueous Zn-ion batteries[J]. CrystEngComm,2021,23(48):8650-8659. doi: 10.1039/D1CE01188J
    [61] Liu J, Long J, Shen Z, et al. A self-healing flexible quasi-solid zinc-ion battery using all-in-one electrodes[J]. Advanced Science,2021,8(8):2004689. doi: 10.1002/advs.202004689
    [62] Tao Y, Huang D, Chen H, et al. Electrochemical generation of hydrated zinc vanadium oxide with boosted intercalation pseudocapacitive storage for a high-rate flexible zinc-ion battery[J]. ACS Applied Materials & Interfaces,2021,13(14):16576-16584.
    [63] Tan Q, Li X, Zhang B, et al. Valence engineering via in situ carbon reduction on octahedron sites Mn3O4 for ultra-long cycle life aqueous Zn-ion battery[J]. Advanced Energy Materials,2020,10(38):2001050. doi: 10.1002/aenm.202001050
    [64] Zhang Y, Deng S, Li Y, et al. Anchoring MnO2 on nitrogen-doped porous carbon nanosheets as flexible arrays cathodes for advanced rechargeable Zn-MnO2 batteries[J]. Energy Storage Materials,2020,29:52-59. doi: 10.1016/j.ensm.2020.04.003
    [65] Wu F, Gao X, Xu X, et al. MnO2 nanosheet-assembled hollow polyhedron grown on carbon cloth for flexible aqueous zinc-ion batteries[J]. ChemSusChem,2020,13(6):1537-1545. doi: 10.1002/cssc.201903006
    [66] Li F, Liu Y L, Wang G G, et al. The design of flower-like C-MnO2 nanosheets on carbon cloth toward high-performance flexible zinc-ion batteries[J]. Journal of Materials Chemistry A,2021,9(15):9675-9684. doi: 10.1039/D0TA12009J
    [67] Chen J, Zhou Y, Islam M S, et al. Carbon fiber reinforced Zn-MnO2 structural composite batteries[J]. Composites Science and Technology,2021,209:108787. doi: 10.1016/j.compscitech.2021.108787
    [68] Lee Y G, Lee J, An G H. Free-standing manganese oxide on flexible graphene films as advanced electrodes for stable, high energy-density solid-state zinc-ion batteries[J]. Chemical Engineering Journal,2021,414:128916. doi: 10.1016/j.cej.2021.128916
    [69] Li X, Wang X Y, Sun J. Recent progress in the carbon-based frameworks for high specific capacity anodes/cathode in lithium/sodium ion batteries[J]. New Carbon Materials,2021,36(1):106-116. doi: 10.1016/S1872-5805(21)60008-2
    [70] Bai Y, Yue H, Wang J, et al. Super-durable ultralong carbon nanotubes[J]. Science,2020,369(6507):1104-1106. doi: 10.1126/science.aay5220
    [71] Liu X, Ma L, Du Y, et al. Vanadium pentoxide nanofibers/carbon nanotubes hybrid film for high-performance aqueous zinc-ion batteries[J]. Nanomaterials,2021,11(4):1054. doi: 10.3390/nano11041054
    [72] Tang F, Zhou W, Chen M, et al. Flexible free-standing paper electrodes based on reduced graphene oxide/δ-NaxV2O5·nH2O nanocomposite for high-performance aqueous zinc-ion batteries[J]. Electrochimica Acta,2019,328:135137. doi: 10.1016/j.electacta.2019.135137
    [73] Kim S H, Kim J M, Ahn D B, et al. Cellulose nanofiber/carbon nanotube-based bicontinuous ion/electron conduction networks for high-performance aqueous Zn-ion batteries[J]. Small,2020,16(44):2002837. doi: 10.1002/smll.202002837
    [74] Liu X, Xu G, Huang S, et al. Free-standing composite of NaxV2O5·nH2O nanobelts and carbon nanotubes with interwoven architecture for large areal capacity and high-rate capability aqueous zinc ion batteries[J]. Electrochimica Acta,2021,368:137600. doi: 10.1016/j.electacta.2020.137600
    [75] Yue X, Liu H, Liu P. Polymer grafted on carbon nanotubes as a flexible cathode for aqueous zinc ion batteries[J]. Chemical Communications,2019,55(11):1647-1650. doi: 10.1039/C8CC10060H
    [76] Dong Y, Wu Z S, Ren W, et al. Graphene: a promising 2D material for electrochemical energy storage[J]. Science Bulletin,2017,62(10):724-740. doi: 10.1016/j.scib.2017.04.010
    [77] Li S, Liu Y, Zhao X, et al. Sandwich-like heterostructures of MoS2/graphene with enlarged interlayer spacing and enhanced hydrophilicity as high-performance cathodes for aqueous zinc-ion batteries[J]. Advanced Materials,2021,33(12):2007480. doi: 10.1002/adma.202007480
    [78] Shi F, Mang C, Liu H, et al. Flexible and high-energy-density Zn/MnO2 batteries enabled by electrochemically exfoliated graphene nanosheets[J]. New Journal of Chemistry,2020,44(3):653-657. doi: 10.1039/C9NJ05433B
    [79] Wang X, Wang L, Zhang B, et al. A flexible carbon nanotube@V2O5 film as a high-capacity and durable cathode for zinc ion batteries[J]. Journal of Energy Chemistry,2021,59:126-133. doi: 10.1016/j.jechem.2020.10.007
    [80] Li H, Liu Z, Liang G, et al. Waterproof and tailorable elastic rechargeable yarn zinc ion batteries by a cross-linked polyacrylamide electrolyte[J]. ACS Nano,2018,12(4):3140-3148. doi: 10.1021/acsnano.7b09003
    [81] Shi H, Wen G, Nie Y, et al. Flexible 3D carbon cloth as a high-performing electrode for energy storage and conversion[J]. Nanoscale,2020,12(9):5261-5285. doi: 10.1039/C9NR09785F
    [82] Yang S, Cheng Y, Xiao X, et al. Development and application of carbon fiber in batteries[J]. Chemical Engineering Journal,2020,384:123294. doi: 10.1016/j.cej.2019.123294
    [83] Hu H, Zhao Z, Wan W, et al. Ultralight and highly compressible graphene aerogels[J]. Advanced Materials,2013,25(15):2219-2223. doi: 10.1002/adma.201204530
    [84] Zhang M, Xu W, Wu L, et al. Recent progress in MXene-based nanomaterials for high-performance aqueous zinc-ion hybrid capacitors[J]. New Carbon Materials,2022,37(3):1-19.
    [85] Wu Z S, Bao X, Sun C, et al. Scalable fabrication of printed Zn//MnO2 planar micro-batteries with high volumetric energy density and exceptional safety[J]. National Science Review,2020,7(1):64-72. doi: 10.1093/nsr/nwz070
    [86] Zeng Y, Zhang X, Qin R, et al. Dendrite-free zinc deposition induced by multifunctional CNT frameworks for stable flexible Zn-ion batteries[J]. Advanced Materials,2019,31(36):1903675. doi: 10.1002/adma.201903675
    [87] Qian Y, Meng C, He J, et al. A lightweight 3D Zn@Cu nanosheets@activated carbon cloth as long-life anode with large capacity for flexible zinc ion batteries[J]. Journal of Power Sources,2020,480:228871. doi: 10.1016/j.jpowsour.2020.228871
    [88] Liu Y, Zhou X, Bai Y, et al. Engineering integrated structure for high-performance flexible zinc-ion batteries[J]. Chemical Engineering Journal,2021,417:127955. doi: 10.1016/j.cej.2020.127955
    [89] Cao Q, Gao H, Gao Y, et al. Regulating dendrite-free zinc deposition by 3D zincopilic nitrogen-doped vertical graphene for high-performance flexible Zn-ion batteries[J]. Advanced Functional Materials,2021,31(37):2103922. doi: 10.1002/adfm.202103922
    [90] Wang A, Zhou W, Chen M, et al. Integrated design of aqueous zinc-ion batteries based on dendrite-free zinc microspheres/carbon nanotubes/nanocellulose composite film anode[J]. Journal of Colloid and Interface Science,2021,594:389-397. doi: 10.1016/j.jcis.2021.03.067
    [91] Gao C, Wang J, Huang Y, et al. A high-performance free-standing Zn anode for flexible zinc-ion batteries[J]. Nanoscale,2021,13(22):10100-10107. doi: 10.1039/D1NR01266E
    [92] Chao D, Zhu C R, Song M, et al. A high-rate and stable quasi-solid-state zinc-ion battery with novel 2D layered zinc orthovanadate array[J]. Advanced Materials,2018,30(32):1803181. doi: 10.1002/adma.201803181
    [93] Zhang Q, Luan J, Tang Y, et al. Interfacial design of dendrite-free zinc anodes for aqueous zinc-ion batteries[J]. Angewandte Chemie International Edition,2020,59(32):13180-13191. doi: 10.1002/anie.202000162
    [94] Li Y, Wu L, Dong C, et al. Manipulating horizontal Zn deposition with graphene interpenetrated Zn hybrid foils for dendrite-free aqueous zinc ion batteries [J]. Energy & Environmental Materials, 2022.https://doi.org/10.1002/eem2.12423.
    [95] Mo Y, Xiao K, Wu J, et al. Lithium-ion battery separator: functional modification and characterization[J]. Acta Physico-Chimica Sinica,2022,38(6):2107030.
    [96] Li C, Sun Z, Yang T, et al. Directly grown vertical graphene carpets as janus separators toward stabilized Zn metal anodes[J]. Advanced Materials,2020,32(33):2003425. doi: 10.1002/adma.202003425
    [97] Cao J, Zhang D, Gu C, et al. Manipulating crystallographic orientation of zinc deposition for dendrite-free zinc ion batteries[J]. Advanced Energy Materials,2021,11(29):2101299. doi: 10.1002/aenm.202101299
    [98] Wu L, Zhang Y, Shang P, et al. Redistributing Zn ion flux by bifunctional graphitic carbon nitride nanosheets for dendrite-free zinc metal anodes[J]. Journal of Materials Chemistry A,2021,9(48):27408-27414. doi: 10.1039/D1TA08697A
    [99] Huang S, Wan F, Bi S, et al. A self-healing integrated all-in-one zinc-ion battery[J]. Angewandte Chemie International Edition,2019,58(13):4313-4317. doi: 10.1002/anie.201814653
    [100] Zhang X, Li J, Ao H, et al. Appropriately hydrophilic/hydrophobic cathode enables high-performance aqueous zinc-ion batteries[J]. Energy Storage Materials,2020,30:337-345. doi: 10.1016/j.ensm.2020.05.021
    [101] Gao X, Liu H, Wang D, et al. Graphdiyne: synthesis, properties, and applications[J]. Chemical Society Reviews,2019,48(3):908-936. doi: 10.1039/C8CS00773J
    [102] Yang Q, Li L, Hussain T, et al. Stabilizing interface pH by N-modified graphdiyne for dendrite-free and high-rate aqueous Zn-ion batteries[J]. Angewandte Chemie International Edition,2022,61(6):e202112304.
    [103] Shen X, He J, Wang N, et al. Graphdiyne for electrochemical energy storage devices[J]. Acta Physico-Chimica Sinica,2018,34(9):1029-1047. doi: 10.3866/PKU.WHXB201801122
    [104] Chaikittisilp W, Ariga K, Yamauchi Y J J o M C A. A new family of carbon materials: synthesis of MOF-derived nanoporous carbons and their promising applications[J]. Journal of Materials Chemistry A,2013,1(1):14-19. doi: 10.1039/C2TA00278G
    [105] Li J, Lin Q, Zheng Z, et al. How is cycle life of three-dimensional zinc metal anodes with carbon fiber backbones affected by depth of discharge and current density in zinc-ion batteries?[J]. ACS Applied Materials & Interfaces,2022,14(10):12323-12330.
    [106] Wang Y, Jiang H, Zheng R, et al. A flexible, electrochromic, rechargeable Zn-ion battery based on actiniae-like self-doped polyaniline cathode[J]. Journal of Materials Chemistry A,2020,8(25):12799-12809. doi: 10.1039/D0TA04203J
    [107] Deka Boruah B, Mathieson A, Park S K, et al. Vanadium dioxide cathodes for high-rate photo-rechargeable zinc-ion batteries[J]. Advanced Energy Materials,2021,11(13):2100115. doi: 10.1002/aenm.202100115
    [108] Li H, Han C, Huang Y, et al. An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte[J]. Energy & Environmental Science,2018,11(4):941-951.
    [109] Mo F, Liang G, Meng Q, et al. A flexible rechargeable aqueous zinc manganese-dioxide battery working at −20 °C[J]. Energy & Environmental Science,2019,12(2):706-715.
    [110] Shao Z, Cheng S, Zhang Y, et al. Wearable and fully biocompatible all-in-one structured ''paper-like'' zinc ion battery[J]. ACS Applied Materials & Interfaces,2021,13(29):34349-34356.
    [111] Zhang Y, Wang Q, Bi S, et al. Flexible all-in-one zinc-ion batteries[J]. Nanoscale,2019,11(38):17630-17636. doi: 10.1039/C9NR06476A
    [112] Chang D, Liu J, Fang B, et al. Reversible fusion and fission of graphene oxide-based fibers[J]. Science,2021,372(6542):614-617. doi: 10.1126/science.abb6640
    [113] Chen Z, Li X, Wang D, et al. Grafted MXene/polymer electrolyte for high performance solid zinc batteries with enhanced shelf life at low/high temperatures[J]. Energy & Environmental Science,2021,14(6):3492-3501.
    [114] Jin X, Song L, Dai C, et al. A self-healing zinc ion battery under −20 °C[J]. Energy Storage Materials,2022,44:517-526. doi: 10.1016/j.ensm.2021.11.004
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  897
  • HTML全文浏览量:  417
  • PDF下载量:  233
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-06
  • 修回日期:  2022-07-12
  • 网络出版日期:  2022-07-28
  • 刊出日期:  2022-10-01

目录

    /

    返回文章
    返回