留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Three-dimensional printed carbon-based microbatteries: progress on technologies, materials and applications

HE Su-jiao ZHANG Kai-qiang ZOU Ya-jun TIAN Zhi-hong

贺素姣, 张凯强, 邹雅珺, 田志红. 3D打印碳基微电池的技术、材料与应用进展. 新型炭材料(中英文), 2022, 37(5): 898-917. doi: 10.1016/S1872-5805(22)60634-6
引用本文: 贺素姣, 张凯强, 邹雅珺, 田志红. 3D打印碳基微电池的技术、材料与应用进展. 新型炭材料(中英文), 2022, 37(5): 898-917. doi: 10.1016/S1872-5805(22)60634-6
HE Su-jiao, ZHANG Kai-qiang, ZOU Ya-jun, TIAN Zhi-hong. Three-dimensional printed carbon-based microbatteries: progress on technologies, materials and applications. New Carbon Mater., 2022, 37(5): 898-917. doi: 10.1016/S1872-5805(22)60634-6
Citation: HE Su-jiao, ZHANG Kai-qiang, ZOU Ya-jun, TIAN Zhi-hong. Three-dimensional printed carbon-based microbatteries: progress on technologies, materials and applications. New Carbon Mater., 2022, 37(5): 898-917. doi: 10.1016/S1872-5805(22)60634-6

3D打印碳基微电池的技术、材料与应用进展

doi: 10.1016/S1872-5805(22)60634-6
基金项目: 国家自然科学基金项目(52003251);河南省杰出外籍科学家工作室(GZS2022014)
详细信息
    通讯作者:

    邹雅珺,工程师. E-mail:yajun-zou@geidco.org

    田志红,教授. E-mail:zhihong.tian@henu.edu.cn

  • 中图分类号: TQ127.1+1

Three-dimensional printed carbon-based microbatteries: progress on technologies, materials and applications

Funds: This work was partly supported by the National Natural Science Foundation of China (52003251) and Henan Center for Outstanding Overseas Scientists (GZS2022014)
More Information
  • 摘要: 可充电微型电池可以为下一代可穿戴便携设备提供储能装置。增材制造也称为三维(3D)打印技术,具有构建复杂3D构型的能力,为制备尺寸可调、形状一致性好、兼具高能量密度和高功率密度的微电池提供了新的机遇。与其他多孔金属电极材料相比,轻质炭材料具有比表面积大、导电性好、化学稳定性高等优点。近年来,基于碳基墨水的3D打印技术已被用于制备多种类型的可充电微电池。为了对碳基微电池的电化学性能进行优化,并充分发挥其潜力,亟需对3D打印技术、材料设计以及应用方向进行梳理,从而深入理解3D打印电池方法的设计优化策略。本文首先介绍了4种主要3D打印技术的最新进展,阐述了导电炭材料在解决3D打印微电池挑战中的研究方法,总结了其在一系列储能设备和可穿戴电子设备集成中的应用。最后,进一步讨论了3D打印技术制造碳基微电池面临的关键科学问题和未来的发展方向。
  • FIG. 1815.  FIG. 1815.

    FIG. 1815..  FIG. 1815.

    Figure  1.  Schematic diagram of the major techniques, printable carbon materials and applications of 3D printing in rechargeable microbatteries[6, 9, 19, 23-32]. Reprinted with permission.

    Figure  2.  (a) Conventional battery geometries. (b) 3D designed microbatteries with interdigitated anode and cathode plate configuration[35]. Reprinted with permission.

    Figure  3.  Schematic diagram of (a) the direct ink printing (DIW) technique, (b) fused deposition modeling (FDM) technique, (c) selective laser sintering (SLS) technique, (d) stereolithography (SLA) technique and (e) material jetting technique (e)[40]. Reprinted with permission.

    Figure  4.  (a) Digital image displaying the procedure of printing the 3D architectures line-by-line (upper), and isometric view of the holey graphene oxide (hGO) mesh with a 0.8 mm line spacing (bottom)[54]. (b) Schematic illustration of the 3D printing process for sulfur/carbon black thick cathodes (10 mm grid diameter)[31]. (c) Schematic of synthesis of 3D graphene foams (GFs)[61]. (d) Designed structure of C-MEMS 3D microbattery[62]. Reprinted with permission.

    Figure  5.  (a) Schematic illustration of the 3D printed negative electrode disc (graphite/PLA) elaboration process[50]. (b) Digital photo of the 3D printing process of graphene/PLA filament. (c) Schematic of the coin cell fabrication with the graphene/PLA anode. (d) Coulombic efficiency of the 3D printed graphene/PLA anode. (e) Rate capability of the 3D printed graphene/PLA anode[47]. Reprinted with permission.

    Figure  6.  (a) Model of the 3D-printed graphene-based electrodes. The external walls are the current collector (Cu), and the internal walls are graphene. (b) Digital image of the chemically modified graphene (CMG)/Cu one-leg component after freeze-drying. (c) SEM images of the interface of reduced chemically modified graphene (rCMG)/Cu. (d) SEM images inside the rCMG filaments[36]. (e) Digital image of a miniaturized version of the 3D-printed LFP/rGO and LTO/rGO electrodes. (f) Digital photo of the 3D-printed LFP/rGO and LTO/rGO electrode arrays. (g) Charge and discharge curves of the LFP/rGO half-cell at a current density of 10 mA g−1. Inset is a schematic of the planar battery. (h) Charging and discharging curves of the full cell[19]. Reprinted with permission.

    Figure  7.  (a) Schematic diagram of the IJP setup. (b-c) Schematic diagram of the 3D printed ATM/GO composite droplets. (d) Formation of ice crystal during 3D printing. (e) ATM/GO composite aerogel after freeze drying. (f) Image of the ATM/GO aerogel after freeze drying. (g) Image of the ATM/GO aerogel after annealing[9]. (h) SEM image of the yarn composed of three LFP fibers. (i) Schematic diagram of the all-fiber LIB device[69]. (k) Schematic diagram of the 3D-printed full cell[39]. Reprinted with permission.

    Figure  8.  (a) Schematic illustration of 3DP-Air-electrode. (b) Schematic illustration of the reaction region of the Zn-O2 battery. The double green balls represent oxygen molecules[26]. (c) Schematic illustration of the Ni/r-GO framework. (d) Low-magnification FESEM image of the Ni/r-GO electrode. (e) Discharge and charge curves of the Ni/r-GO cathode at a current density of 100 mA g−1. (f) Discharge and charge curves of the Ni/r-GO cathode at various current densities with a capacity limit of 1000 mA h g−1[24]. Reprinted with permission.

    Figure  9.  (a) Independent components of the 3D printed coin cell. (b) Assembled coin cell. (c) 3D printed glasses with a LCD lens and 3D printed batteries integrated. (d) Digital photos showing the sunglasses transmitting and blocking the image of the Duke Chapel with LCD off and on, respectively. (e) Separated components of a 3D printed bangle battery integrated with LED. (f) LED powered by the 3D printed bangle battery[74]. (g) Prototype photo of the printed battery before being integrated into the textile and (h) after being integrated into the biomonitoring belt to provide 22 h autonomy[91]. Reprinted with permission.

    Table  1.   A comparison of different 3D-printing techniques.

    3D printing techniquesInksMacroporosityFraction of active materialsResolution (μm)StrengthsWeaknesses
    Direct ink writing (DIW) Metal, ceramic, or polymer gels with high viscosity, suitable rheological and viscoelastic properties 5–10 μm[41]
    ~200 μm[23,30]
    300–400 μm[42]
    0.06–0.43 (v/v)[41]
    70%[19]
    1–100 Versatile easy operation Required post-processing Low resolution
    Fused deposition modeling (FDM) Thermoplastic filaments with active materials ~500 μm[34] 8%[47] 50–200 Low cost Single material
    Selective laser sintering (SLS) Metal, polymer or ceramic powders 0.0012–
    0.0071 mm3[43]
    5%–40%[45] 80–250 Simple material processing High cost
    Stereolitho-graphy (SLA) Photosensitive liquid resin consisting of active materials, photoinitiators, and prepolymers with good flowability and suitable refractive index ~300 μm[46] 0.08%–
    0.20%[41]
    >10 High resolution and efficiency good surface quality Limited to photocurable materials required solvents (resins)
    Inkjet printing (IJP) Low viscosity Newtonian
    liquid (40–100 cP)
    65%–70%[51] 70%[9] 5–200 High flexibility of multi-material capability Lack of self-standing ability, low printing speed
    下载: 导出CSV

    Table  2.   Electrochemical performance over a series of 3D printed carbon-based microbatteries.

    Printed carbon-based component3D-printing
    technique
    Anode/CathodeBattery typeElectrochemical performance
    Si/C-graphite[93]DIW[Si/C-graphite]/LiLi-ion battery484 mA·h g−1 (C/4)
    Graphite/PLA[50]FDM[graphite/PLA]/LiLi-ion battery200 mAh·g−1 (cathode) at 18.6 mA·g−1 (C/20)
    Graphite/PLA and LFP/carbon black[33]FDM[graphite/PLA]/[LFP/carbon black]Li-ion battery165 mAh·g−1 (anode) at 10 mA·g−1
    rGO-AgNWs-LTO[94]DIWLi/rGO-AgNWs-LTOLi-ion battery121 mAh·g−1 (10 C)
    4.74 mAh·cm−2
    LFP/GO, LTO/GO[19]DIW[LTO/GO]/[LFP/GO]Li-ion battery~160 mAh·g −1 (cathode)
    and ~170 mAh·g −1 (anode) at 10 mA·g−1
    Graphene/PLA[48]FDM[graphite/PLA]/LiLi-ion battery500 mAh·g-1 at 40 mA·g-1 (anode)
    PoPD/nanocarbon/LMO[29]FDMPt/[PoPD/nanocarbon/LMO]Li-ion battery69.1 mAh·g−1 at 0.036 mA·cm−2 (cathode)
    LFP/CNTs[34]FDMLi/[LFP/CNTs]Li-ion battery7.5 mAh·cm−2 (cathode)
    69.41 J·cm−2 at
    2.99 mW·cm−2
    LTO/CNTs, LFP/CNTs[39]DIW[LTO/CNTs]/[LFP/CNTs]Li-ion battery~110 mAh·g−1 at 50 mA·g−1
    LiNi0.8Co0.15Al0.05O2/CF, CF[32]DIWCF/[LiNi0.8Co0.15Al0.05O2/CF]Li-ion battery191 mAh·g−1 (0.1 C)
    LTO/Graphene, LMO/MWCNT[74]FDM[LTO/Graphene]/[LMO/MWCNT]Li-ion battery3.91 mAh·cm–3, coulombic
    Sulfur/DIB/GO[42]DIW&FDMSulfur/[Sulfur/DIB/GO]Li-S battery812.8 mAh·g−1 at 50 mA·g−1
    aMWCNT[64]IJPLi/aMWCNTLi-S battery~7 mAh·cm−2 at 11.5 mA·cm−2
    S@SWCNTs[65]IJPLi/[S@SWCNTs]Li-S battery850 mAh·g–1 (C/2), between 700 and
    800 mAh·g–1 for 100 cycles (C/2)
    S/C composite[95]DIWLi/[S/C composite]Li-S battery530 mAh·g−1 at 10 mA·cm−2
    LaB6/C@S[96]DIWLi/[LaB6/C@S]Li-S battery693 mAh·g−1
    S/C[31]DIWLi/[S/C]Li-S battery1009 mAh·g−1
    Li/CNTs, Se[27]DIW[Li/CNTs]/SeLi-Se battery12.99 mAh·cm−2 at 3 mA·cm−2
    Li-plated 3DP-NC[30]DIW[Li-plated 3DP-NC]/LiFePO4Li-metal battery30 mAh·cm–2 at 10 mA·cm–2
    hGO meshes[54]DIWLi/hGOLi-O2 battery13.3 mAh·cm−2 at 0.1 mA·cm−2 (cathode)
    (~4.8 mA·h or ~3879 mAh·g−1 in total capacity)
    Co/N-doped carbon[23]DIWLi/[Co/N-doped carbon flakes]Li-O2 batteryEnergy density of 798 Wh·kg–1 cell
    Ni-rGO[24]DIWLi/[Ni-rGO]Li-CO2 battery14.6 mAh·cm–2 at 0.1 mA·cm–2
    (8991.0 mAh·g–1)
    rGO/Na3V2(PO4)3[12]DIWrGO/Na3V2(PO4)3Na-ion battery1.26 mAh·cm–2 (0.2 C) (cathode)
    0.39 mAh·cm–2 (1 C) (full cell)
    MoS2/rGO[9]IJP[MoS2/rGO]/NaNa-ion battery429 mAh·g−1 at 100 mA·g−1 (~ C/3.3)
    rGO[28]DIWCP-protected Na/rGONa-O2 battery13484.6 mAh·g−1 at 0.2 A g−1
    Zn/CB/CF, MnO2/GO/CNTs[26]DIW[Zn/CB/CF]/[MnO2/GO/CNTs]Zn-O2 battery670 mAh·g–1 at 5 mA·cm–2
    Ag2O-SIS, Ga-CB-SIS[91]DIWGa-CB-SIS/Ag2O-SISAg-Ga battery~19.4 mAh·cm−2
    下载: 导出CSV
  • [1] Zhang L, Ge L, He G, et al. Tuning the linkers in polymer-based cathodes to realize high sulfur content and high-performance potassium–sulfur batteries[J]. The Journal of Physical Chemistry C,2021,125:18604-18613.
    [2] Lyu Z, Lim G J H, Koh J J, et al. Design and manufacture of 3D-printed batteries[J]. Joule,2021,5:89-114. doi: 10.1016/j.joule.2020.11.010
    [3] Tian Z, Zhang Y, Zhu J, et al. A reanalysis of the diverse sodium species in carbon anodes for sodium ion batteries: a thermodynamic view[J]. Advanced Energy Materials,2021,11:2102489. doi: 10.1002/aenm.202102489
    [4] Huang J, Li Y, Xie R, et al. Structural engineering of cathodes for improved Zn-ion batteries[J]. Journal of Energy Chemistry,2021,58:147-155. doi: 10.1016/j.jechem.2020.09.035
    [5] Xu F, Qu C, Lu Q, et al. Atomic-Sn-enabled high utilization, large capacity, and long life Na anode[J]. Science Advances,2022,8:7489. doi: 10.1126/sciadv.abm7489
    [6] Zhang W, Liu H, Zhang X, et al. 3D printed micro-electrochemical energy storage devices: from design to integration[J]. Advanced Functional Materials,2021:2104909.
    [7] Zheng Y, Huang X, Chen J, et al. A review of conductive carbon materials for 3D printing: materials, technologies, properties, and applications[J]. Materials,2021,14:3911. doi: 10.3390/ma14143911
    [8] Zong W, Chui N, Tian Z, et al. Ultrafine MoP nanoparticle splotched nitrogen-doped carbon nanosheets enabling high-performance 3D-printed potassium-ion hybrid capacitors[J]. Advanced Science,2021,8:2004142. doi: 10.1002/advs.202004142
    [9] Brown E, Yan P L, Tekik H. 3D printing of hybrid MoS2-graphene aerogels as highly porous electrode materials for sodium ion battery anodes[J]. Materials & Design,2019,170:107689.
    [10] Liu C, Xu F, Liu Y. High mass loading ultrathick porous Li4Ti5O12 electrodes with improved areal capacity fabricated via low temperature direct writing[J]. Electrochimica Acta,2019,314:81-88. doi: 10.1016/j.electacta.2019.05.082
    [11] Sun K, Wei, T S, Ahn B Y. 3D printing of interdigitated Li-ion microbattery architectures.[J]. Advanced Materials,2013,25:4539-4543. doi: 10.1002/adma.201301036
    [12] Ding J, Shen K, Du Z, et al. 3D-printed hierarchical porous frameworks for sodium storage[J]. ACS Applied Materials & Interfaces,2017,9:41871-41877.
    [13] Down M P, Martínez-Periñán E, Foster C W, et al. Next-generation additive manufacturing of complete standalone sodium-ion energy storage architectures[J]. Advanced Energy Materials,2019,9:1803019. doi: 10.1002/aenm.201803019
    [14] Nicolas P B V, Celzard V F A. 3D printing of carbon-based materials: A review[J]. Carbon,2021,183:449-485. doi: 10.1016/j.carbon.2021.07.036
    [15] Li Y, Huang J, Kang L, et al. Self-assembled carbon nanoribbons with the heteroatom doping used as ultrafast charging cathodes in zinc-ion hybrid supercapacitors[J]. Science China Materials,2022,65:1495-1502. doi: 10.1007/s40843-021-1923-6
    [16] Lai F, Feng J, Heil T, et al. Partially delocalized charge in Fe-doped NiCo2S4 nanosheet–mesoporous carbon-composites for high-voltage supercapacitors[J]. Journal of Materials Chemistry A,2019,7:19342-19347. doi: 10.1039/C9TA06250E
    [17] Tian Z, Lai F, Heil T, et al. Synthesis of carbon frameworks with N, O and S-lined pores from gallic acid and thiourea for superior CO2 adsorption and supercapacitors[J]. Science China Materials,2020,643:748-757.
    [18] Zhu T, Liu S, Wan K, et al. Fluorine and nitrogen dual-doped porous carbon nanosheet-enabled compact electrode structure for high volumetric energy storage[J]. ACS Applied Energy Materials,2020,3:4949-4957.
    [19] Fu K, Wang Y, Yan C, et al. Graphene oxide-based electrode inks for 3D-printed lithium-ion batteries[J]. Advanced Materials,2016,28:2587-2594. doi: 10.1002/adma.201505391
    [20] Zhou S, Usman I, Wang Y, et al. 3D printing for rechargeable lithium metal batteries[J]. Energy Storage Materials,2021,38:141-156. doi: 10.1016/j.ensm.2021.02.041
    [21] Zhou H, Yang H, Yao S, et al. Synthesis of 3D printing materials and their electrochemical applications[J]. Chinese Chemical Letters,2022,33:3681-3694. doi: 10.1016/j.cclet.2021.11.018
    [22] Narita K, Saccone M A, Sun Y, et al. Additive manufacturing of 3D batteries: a perspective[J]. Journal of Materials Research,2022,37:1535-1546. doi: 10.1557/s43578-022-00562-w
    [23] Lyu Z, Lim G J H, Guo R, et al. 3D-printed MOF-derived hierarchically porous frameworks for practical high-energy density Li-O2 batteries[J]. Advanced Functional Materials,2019,29:1806658. doi: 10.1002/adfm.201806658
    [24] Qiao Y, Liu Y, Chen C, et al. 3D-printed graphene oxide framework with thermal shock synthesized nanoparticles for Li-CO2 batteries[J]. Advanced Functional Materials,2018,28:1805899. doi: 10.1002/adfm.201805899
    [25] Togonon J J H, Chiang P C, Lin H J, et al. Pure carbon-based electrodes for metal-ion batteries[J]. Carbon Trends,2021,3:100035. doi: 10.1016/j.cartre.2021.100035
    [26] Zhang J, Li X, Fan S, et al. 3D-printed functional electrodes towards Zn-Air batteries[J]. Materials Today Energy,2020,16:100407. doi: 10.1016/j.mtener.2020.100407
    [27] Gao X, Yang X, Wang S, et al. A 3D-printed ultra-high Se loading cathode for high energy density quasi-solid-state Li–Se batteries[J]. Journal of Materials Chemistry A,2020,8:278-286. doi: 10.1039/C9TA10623E
    [28] Lin X, Wang J, Gao X, et al. 3D printing of free-standing “O2 breathable” air electrodes for high-capacity and long-life Na-O2 batteries[J]. Chemistry of Materials,2020,32:3018-3027. doi: 10.1021/acs.chemmater.9b05360
    [29] Gao W, Pumera M. 3D printed nanocarbon frameworks for Li-ion battery cathodes[J]. Advanced Functional Materials,2021,31:2007285. doi: 10.1002/adfm.202007285
    [30] Lyu Z, Lim G J H, Guo R, et al. 3D-printed electrodes for lithium metal batteries with high areal capacity and high-rate capability[J]. Energy Storage Materials,2020,24:336-342. doi: 10.1016/j.ensm.2019.07.041
    [31] Gao X, Sun Q, Yang X, et al. Toward a remarkable Li-S battery via 3D printing[J]. Nano Energy,2019,56:595-603. doi: 10.1016/j.nanoen.2018.12.001
    [32] Praveen S, Sim G S, Shaji N, et al. 3D-printed self-standing electrodes for flexible Li-ion batteries[J]. Applied Materials Today,2022,26:100980. doi: 10.1016/j.apmt.2021.100980
    [33] Maurel A, Grugeon S, Fleutot B, et al. Three-dimensional printing of a LiFePO4/graphite battery cell via fused deposition modeling[J]. Scientific Reports,2019,9:18031. doi: 10.1038/s41598-019-54518-y
    [34] Wang J, Sun Q, Gao X, et al. Toward high areal energy and power density electrode for Li-ion batteries via optimized 3D printing approach[J]. ACS Applied Materials & Interfaces,2018,10:39794-39801.
    [35] Miyamoto K, Sasaki T, Nishi T, et al. 3D-microbattery architectural design optimization using automatic geometry generator and transmission-line model[J]. iScience,2020,23:101317. doi: 10.1016/j.isci.2020.101317
    [36] Rocha V G, García-Tuñon E, Botas C, et al. Multimaterial 3D printing of graphene-based electrodes for electrochemical energy storage using thermoresponsive inks[J]. ACS Applied Materials & Interfaces,2017,9:37136-37145.
    [37] Zhang M, Mei H, Chang P, et al. 3D printing of structured electrodes for rechargeable batteries[J]. Journal of Materials Chemistry A,2020,8:10670. doi: 10.1039/D0TA02099K
    [38] Hu J, Jiang Y, Cui S, et al. 3D-printed cathodes of LiMn1−xFexPO4 nanocrystals achieve both ultrahigh rate and high capacity for advanced lithium-ion battery[J]. Advanced Energy Materials,2016,6:1600856. doi: 10.1002/aenm.201600856
    [39] Wang Y, Chen C, Xie H, et al. 3D-printed all-fiber Li-ion battery toward wearable energy storage[J]. Advanced Functional Materials,2017,27:1703140. doi: 10.1002/adfm.201703140
    [40] Ambrosi A, Pumera M. 3D-printing technologies for electrochemical applications[J]. Chemical Society Reviews,2016,45:2740-2755. doi: 10.1039/C5CS00714C
    [41] Narita K, Citrin M A, Yang H, et al. 3D architected carbon electrodes for energy storage[J]. Advanced Energy Materials,2021,11:2002637. doi: 10.1002/aenm.202002637
    [42] Shen K, Mei H, Li B, et al. 3D printing sulfur copolymer-graphene architectures for Li-S batteries[J]. Advanced Energy Materials,2018,8:701527.
    [43] Jansson A, Pejryd L. Characterisation of carbon fibre-reinforced polyamide manufactured by selective laser sintering[J]. Additive Manufacturing,2016,9:7-13. doi: 10.1016/j.addma.2015.12.003
    [44] Yan M, Tian X, Peng G, et al. Hierarchically porous materials prepared by selective laser sintering[J]. Materials & Design,2017,135:62-68.
    [45] Lahtinen E Kukkonen E, Jokivartio J, et al. Preparation of highly porous carbonous electrodes by selective laser sintering[J]. ACS Applied Energy Materials,2019,2:1314-1318. doi: 10.1021/acsaem.8b01881
    [46] Wang P, Zhang H, Wang H, et al. Hybrid manufacturing of 3D hierarchical porous carbons for electrochemical storage[J]. Advanced Materials Technologies,2020,5:1901030. doi: 10.1002/admt.201901030
    [47] Foster C W, Down M P, Zhang Y, et al. 3D printed graphene based energy storage devices[J]. Scientifc Reports,2017,7:11. doi: 10.1038/s41598-017-00052-8
    [48] Foster C W, Zou G Q, Jiang Y, et al. Next generation additive manufacturing: tailorable graphene/polylactic(acid) filaments allow the fabrication of 3D printable porous anodes for utilisation within lithium-ion batteries[J]. Batteries & Supercaps,2019,2:448-453.
    [49] Ragones H, Menkin S, Kamir Y. Towards smart free form-factor 3D printable batteries[J]. Sustainable Energy Fuels,2018,2:1542-1549. doi: 10.1039/C8SE00122G
    [50] Maurel A, Courty M, Fleutot M, et al. Highly loaded graphite-polylactic acid composite-based filaments for lithium-ion battery three-dimensional printing[J]. Chemistry of Materials,2018,30:7484-7493. doi: 10.1021/acs.chemmater.8b02062
    [51] Delannoy P-E, Riou B, Brousse T, et al. Ink-jet printed porous composite LiFePO4 electrode from aqueous suspension for microbatteries[J]. Journal of Power Sources,2015,287:261-268. doi: 10.1016/j.jpowsour.2015.04.067
    [52] Azhari A, Marzbanrad E, Yilman D, et al. Binder-jet powder-bed additive manufacturing (3D printing) of thick graphene-based electrodes[J]. Carbon,2017,119:257-266. doi: 10.1016/j.carbon.2017.04.028
    [53] Yang H, Feng Z, Teng X, et al. Three-dimensional printing of high-mass loading electrodes for energy storage applications[J]. InfoMat,2021:1-17.
    [54] Lacey S D, Kirsch D J, Li Y. Extrusion-based 3D printing of hierarchically porous advanced battery eectrodes[J]. Advanced Materials,2018,30:1705651. doi: 10.1002/adma.201705651
    [55] Zhang X, Wang J, Liu T. 3D printing of polycaprolactone-based composites with diversely tunable mechanical gradients via multi-material fused deposition modeling[J]. Composites Communications,2021,23:100600. doi: 10.1016/j.coco.2020.100600
    [56] Zhang X, Wang J L. Controllable interfacial adhesion behaviors of polymer-on-polymer surfaces during fused deposition modeling 3D printing process[J]. Chemical Physics Letters,2020,739:136959. doi: 10.1016/j.cplett.2019.136959
    [57] Mohamed O A, Masood S H, Bhowmik J Optimization of fused deposition modeling process parameters: a review of current research and future prospects [J]. Advances in Manufacturing, 2015, 3: 42-53.
    [58] Acord K A, Dupuy A D, Bertoli U S, et al. Morphology, microstructure, and phase states in selective laser sintered lithium ion battery cathodes[J]. Journal of Materials Processing Technology,2020,228:116827.
    [59] Yu Y, Chen M, Wang S, et al. Laser sintering of printed anodes for Al-air batteries[J]. Journal of the Electrochemical Society,2018,165:A584-A592. doi: 10.1149/2.0811803jes
    [60] Iwabuchi Y, Yan J. Laser sintering of silicon powder and carbon nanofibers for porous composite thick films[J]. Applied Physics Express,2015,8:026501. doi: 10.7567/APEX.8.026501
    [61] Sha J, Li Y, Salvatierra R V, et al. Three-dimensional printed graphene foams[J]. ACS Nano,2017,11:6860-6867. doi: 10.1021/acsnano.7b01987
    [62] Wang C, Taherabadi L, Jia G, et al. C-MEMS for the manufacture of 3D microbatteries[J]. Electrochemical and Solid-State Letters,2004,7:A435-A438. doi: 10.1149/1.1798151
    [63] Chen Q, Xu R, He Z, et al. Printing 3D gel polymer electrolyte in lithium-ion microbattery using stereolithography[J]. Journal Of The Electrochemical Society,2017,164:A1852-A1857. doi: 10.1149/2.0651709jes
    [64] Milroy C, Manthiram A. Printed microelectrodes for scalable, high-areal-capacity lithium-sulfur batteries[J]. Chemical Communications,2016,52:4282-4285. doi: 10.1039/C5CC10503J
    [65] Milroy C A, Jang S, Fujimori T, et al. Inkjet-printed lithium-sulfur microcathodes for all-printed, integrated nanomanufacturing[J]. Small,2017,13:1603786. doi: 10.1002/smll.201603786
    [66] Liu S, Wan K, Zhang C, et al. Polyaniline-decorated 3D carbon porous network with excellent electrolyte wettability and high energy density for supercapacitors[J]. Composites Communications,2021,24:100610. doi: 10.1016/j.coco.2020.100610
    [67] Yang J, Han H, Pepich H, et al. Recent progress on the design of hollow carbon spheres to host sulfur in room-temperature sodium-sulfur batteries[J]. New Carbon Materials,2020,35:630-645. doi: 10.1016/S1872-5805(20)60519-4
    [68] Xu F, Zhai Y, Zhang E, et al. Ultrastable surface-dominated pseudocapacitive potassium storage enabled by edge-enriched N-doped porous carbon nanosheets[J]. Angewandte Chemie International Edition,2020,59:19460-19467. doi: 10.1002/anie.202005118
    [69] Zou Y, Sun C, Li S, et al. Construction of flexible, integrated rechargeable Li battery based on the coaxial carbon/quaternary oxide composite anode [J]. New Carbon Materials, 2022:doi: 0.1016/S1872-5805(1022)60617-60616.
    [70] Ji K, Han J, Hirata A, et al. Lithium intercalation into bilayer graphene[J]. Nature Communications,2019,10:275. doi: 10.1038/s41467-018-07942-z
    [71] Xiong Z, Yun S Y, Jin H J. Applications of carbon nanotubes for lithium ion battery anodes[J]. Materials,2013,6:1138-1158. doi: 10.3390/ma6031138
    [72] Roselin L S, Juang R S, Hsieh C T, et al. Recent advances and perspectives of carbon-based nanostructures as anode materials for Li-ion batteries[J]. Materials,2019,12:1229. doi: 10.3390/ma12081229
    [73] Zhang X, Yang J, Ren Z, et al. In situ observation of electrolyte-dependent interfacial evolution of graphite anode in sodium-ion batteries via atomic force microscopy[J]. New Carbon Materials,2022,37:371-380. doi: 10.1016/S1872-5805(22)60601-2
    [74] Reyes C, Somogyi R, Niu S, et al. Three-dimensional printing of a complete lithium ion battery with fused filament fabrication[J]. ACS Applied Energy Materials,2018,1:5268-5279.
    [75] Egorov V, Gulzar U, Zhang Y, et al. Evolution of 3D printing methods and materials for electrochemical energy storage[J]. Advanced Materials,2020:2000556.
    [76] Vernardou D, Vasilopoulos K C, Kenanakis G. 3D printed graphene-based electrodes with high electrochemical performance[J]. Applied Physics A,2017,123:623. doi: 10.1007/s00339-017-1238-1
    [77] Kim J, Kumar R, Bandodkar A J, et al. Advanced materials for printed wearable electrochemical devices: a review[J]. Advanced Electronic Materials,2017,3:1600260. doi: 10.1002/aelm.201600260
    [78] Pei S, Cheng H M. The reduction of graphene oxide[J]. Carbon,2012,50:3210-3228. doi: 10.1016/j.carbon.2011.11.010
    [79] Li H, Liang J. Recent development of printed micro-supercapacitors: printable materials, printing technologies, and perspectives[J]. Advanced Materials,2020,32:1805864. doi: 10.1002/adma.201805864
    [80] Guo B, Liang G, Yu S, et al. 3D printing of reduced graphene oxide aerogels for energy storage devices: A paradigm from materials and technologies to applications[J]. Energy Storage Materials,2021,39:146-165. doi: 10.1016/j.ensm.2021.04.021
    [81] Zhang L, Zhang M, Guo H, et al. A universal polyiodide regulation using quaternization engineering toward high value-added and ultra-stable zinc-iodine batteries[J]. Advanced Science,2022,9:2105598. doi: 10.1002/advs.202105598
    [82] He G, Liu Y, Gray D E, et al. Conductive polymer composites cathodes for rechargeable aqueous Zn-ion batteries: A mini-review[J]. Composites Communications,2021,27:100882. doi: 10.1016/j.coco.2021.100882
    [83] Zhu C, Han T Y J, Duoss E B, et al. Highly compressible 3D periodic graphene aerogel microlattices[J]. Nature Communications,2015,6:6962. doi: 10.1038/ncomms7962
    [84] Kordás K, Mustonen T, Tóth G, et al. Inkjet printing of electrically conductive patterns of carbon nanotubes[J]. Small,2006,2:1021-1025. doi: 10.1002/smll.200600061
    [85] Tian Z, Chui N, Lian R, et al. Dual anionic vacancies on carbon nanofiber threaded MoSSe arrays: A free-standing anode for high-performance potassium-ion storage[J]. Energy Storage Materials,2020,27:591-598. doi: 10.1016/j.ensm.2019.12.016
    [86] Ghebretinsae F, Mikkelsen O, Akessa A D, et al. Strength analysis of 3D printed carbon fibre reinforced thermoplastic using experimental and numerical methods[J]. IOP Conference Series:Materials Science and Engineering,2019,700:012024. doi: 10.1088/1757-899X/700/1/012024
    [87] Huang P, Xia Z D, Cui S. 3D printing of carbon fiber-filled conductive silicon rubber[J]. Materials & Design,2018,142:11-21.
    [88] Athreya S R, Kalaitzidou K, Das S. Processing and characterization of a carbon black-filled electrically conductive Nylon-12 nanocomposite produced by selective laser sintering[J]. Materials Science and Engineering:A,2010,527:2637-2642. doi: 10.1016/j.msea.2009.12.028
    [89] Hamzah H H B, Keattch O, Covill D, et al. The effects of printing orientation on the electrochemical behaviour of 3D printed acrylonitrile butadiene styrene (ABS)/carbon black electrodes[J]. Scientific Reports,2018,8:9135. doi: 10.1038/s41598-018-27188-5
    [90] Hong R, Zhao Z, Leng J, et al. Two-step approach based on selective laser sintering for high performance carbon black/polyamide 12 composite with 3D segregated conductive network[J]. Composites Part B:Engineering,2019,176:107214. doi: 10.1016/j.compositesb.2019.107214
    [91] Costa G, Lopes P A, Sanati A L, et al. 3D printed stretchable liquid gallium battery[J]. Advanced Functional Materials,2022:2113232.
    [92] Richter E M, Rocha D P, Cardoso R M, et al. A complete additively manufactured (3D-printed) electrochemical sensing platform[J]. Analytical Chemistry,2019,91:12844. doi: 10.1021/acs.analchem.9b02573
    [93] Drews M, Tepner S, Haberzettl P, et al. Towards 3D-lithium ion microbatteries based on silicon/graphite blend anodes using a dispenser printing technique[J]. RSC Advances,2020,10:22440. doi: 10.1039/D0RA03161E
    [94] Sun C, Liu S, Shi X, et al. 3D printing nanocomposite gel-based thick electrode enabling both high areal capacity and rate performance for lithium-ion battery[J]. Chemical Engineering Journal,2020,381:122641. doi: 10.1016/j.cej.2019.122641
    [95] Gao X, Yanga X, Sun Q, et al. Converting a thick electrode into vertically aligned “Thin electrodes” by 3D-Printing for designing thickness independent Li-S cathode[J]. Energy Storage Materials,2020,24:682-688. doi: 10.1016/j.ensm.2019.08.001
    [96] Cai J, Fan Z, Jin J, et al. Expediting the electrochemical kinetics of 3D-printed sulfur cathodes for Li-S batteries with high rate capability and areal capacity[J]. Nano Energy,2020,75:104970. doi: 10.1016/j.nanoen.2020.104970
    [97] Chu T, Park S, Fu K, et al. 3D printing-enabled advanced electrode architecture design[J]. Carbon Energy,2021,3:424-439. doi: 10.1002/cey2.114
    [98] Iputera K, Huang J Y, Haw S C, et al. Revealing the absence of carbon in aprotic Li–CO2 batteries: a mechanism study toward CO2 reduction under a pure CO2 environment[J]. Journal of Materials Chemistry A,2022,10:3460-3468. doi: 10.1039/D1TA08870J
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  1174
  • HTML全文浏览量:  585
  • PDF下载量:  183
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-15
  • 修回日期:  2022-07-22
  • 网络出版日期:  2022-07-29
  • 刊出日期:  2022-10-01

目录

    /

    返回文章
    返回