留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Optimizing oxygen substituents of a carbon cathode for improved capacitive behavior in ethanol-based zinc-ion capacitors

YUAN Ping XIAO Hao-ming LI Jun-yi LUO Jun-hui LUO Xian-you CHEN Da-ming LI De CHEN Yong

袁平, 肖浩鸣, 李均益, 罗俊辉, 罗先游, 陈大明, 李德, 陈永. 优化炭表面氧官能团增强锌离子电容器的电容性能. 新型炭材料(中英文), 2023, 38(3): 522-533. doi: 10.1016/S1872-5805(23)60733-4
引用本文: 袁平, 肖浩鸣, 李均益, 罗俊辉, 罗先游, 陈大明, 李德, 陈永. 优化炭表面氧官能团增强锌离子电容器的电容性能. 新型炭材料(中英文), 2023, 38(3): 522-533. doi: 10.1016/S1872-5805(23)60733-4
YUAN Ping, XIAO Hao-ming, LI Jun-yi, LUO Jun-hui, LUO Xian-you, CHEN Da-ming, LI De, CHEN Yong. Optimizing oxygen substituents of a carbon cathode for improved capacitive behavior in ethanol-based zinc-ion capacitors. New Carbon Mater., 2023, 38(3): 522-533. doi: 10.1016/S1872-5805(23)60733-4
Citation: YUAN Ping, XIAO Hao-ming, LI Jun-yi, LUO Jun-hui, LUO Xian-you, CHEN Da-ming, LI De, CHEN Yong. Optimizing oxygen substituents of a carbon cathode for improved capacitive behavior in ethanol-based zinc-ion capacitors. New Carbon Mater., 2023, 38(3): 522-533. doi: 10.1016/S1872-5805(23)60733-4

优化炭表面氧官能团增强锌离子电容器的电容性能

doi: 10.1016/S1872-5805(23)60733-4
基金项目: 国家自然科学基金(52062012);广东省重点学科建设项目(2021ZDJS102);广东省高校创新团队(2022KCXTD030、2020KCXTD011);广东大学生科技创新培育专项资金(pdjh2023b0549);佛山科学技术学院学术基金(xsjj202206kjb02)
详细信息
    通讯作者:

    陈大明. E-mail:chendaming@hainanu.edu.cn

    李 德. E-mail:lidenju@sina.com

    陈 永,教授. E-mail:ychen2002@163.com

  • 中图分类号: TQ127.1+1

Optimizing oxygen substituents of a carbon cathode for improved capacitive behavior in ethanol-based zinc-ion capacitors

More Information
  • 摘要: 锌离子电容器(ZICs)具有能量密度高、倍率性能好、循环寿命长、成本低等优点,近年来得到了广泛的研究。在碳基阴极表面引入氧官能团是提高水系ZICs电容性能的有效策略。然而,氧官能团的存在是否有利于提高乙醇(EtOH)基ZICs的电容性能,目前还没有被深入研究。本文采用硝酸氧化和进一步热处理的方法对阴极活性炭表面的氧官能团进行了优化。在ZnCl2/EtOH电解液中,优化后的样品在电流密度为1 A g−1时比电容达到195 F g−1,比未改性的样品 (125 F g−1)提高了56%。同时,ZICs也表现出良好的循环稳定性,在3 A g−1下的稳定循环次数超过16000次,并且保持100%的库仑效率。这是因为氧官能团,特别是羧基和酯基(―COO)的存在,为Zn2+氧化还原反应提供了丰富的电化学活性位点。因此,本研究通过优化氧官能团增强了炭阴极的电容性能,并为EtOH基ZICs的商业应用提供了研究基础。
  • FIG. 2364.  FIG. 2364.

    FIG. 2364..  FIG. 2364.

    Figure  1.  SEM images of (a) AC and (b) AC-O-500. (c, d) Elemental mapping images of AC-O-500

    Figure  2.  (a) Ar adsorption/desorption isotherms, (b) Pore size distributions, (c) Raman spectra, (d) XRD patterns and (e) Contact angles of AC, AC-O, AC-O-400, AC-O-500 and AC-O-600

    Figure  3.  (a) CV curves at different scan rates for (b) AC and (c) AC-O-500, (d) CV comparison of AC and AC-O-500 at 1 mV s−1, (e, f) contribution ratio of the capacitive capacities, (g) contribution ratios, (h) b values in both the charge and discharge processes of AC and AC-O-500, (i) nyquist plots of AC and AC-O-500

    Figure  4.  GCD curves of (a) AC and (b) AC-O-500, (c) rate ability curves, (d) Ragone plot and (e) cycling stability of ZIC with AC- O-500 cathode tested at 3 A g−1

    Figure  5.  (a) FTIR spectra, (b) XPS spectra, (c) O 1s spectra of AC, (d) AC-O, (e) AC-O-500 and (f) OFGs contents

    Figure  6.  (a) Schematic illustrations of the evolution of the OFGs under oxidation and thermal treatment and (b) ZIC energy storage mechanism

    Table  1.   Structural parameters of AC, AC-O, AC-O-400, AC-O-500 and AC-O-600

    Samples SBETa/(m2 g−1)SMicrob/(m2 g−1)VTotalc/(cm3 g−1)VMicrod/(cm3 g−1)
    AC 1751.16 1500.97 0.904 0.734
    AC-O 1240.78 1093.44 0.734 0.521
    AC-O-400 1221.51 1001.25 0.684 0.498
    AC-O-500 1286.62 1020.91 0.699 0.519
    AC-O-600 1386.31 1086.03 0.741 0.558
    Note: a-BET (Brunauer-Emmett-Teller) surface area. b-Micropore specific surface area obtained from the QSDFT method. c-Single-point total pore volume at p/p0 = 0.995. d-Micropore volume obtained from the QSDFT method.
    下载: 导出CSV

    Table  2.   Analysis of the fitted O 1s peaks of the OFGs on the AC samples from XPS spectra

    SamplesC=O (531.3 eV)/%OH (532.3 eV)/%C―O―C (533.3 eV)/%COO (534.3 eV)/%
    AC 1.33 2.69 1.34 0.74
    AC-O 2.23 6.10 3.33 1.50
    AC-O-400 1.93 2.73 5.52 1.77
    AC-O-500 1.53 2.23 4.72 1.93
    AC-O-600 1.28 1.86 3.65 1.25
    下载: 导出CSV
  • [1] Luo X Y, Chen S R, Hu T Z, et al. Renewable biomass-derived carbons for electrochemical capacitor applications[J]. SusMat,2021,1(2):211-240. doi: 10.1002/sus2.8
    [2] Zhai Y P, Dou Y Q, Zhao D Y, et al. Carbon materials for chemical capacitive energy storage[J]. Advanced Materials,2011,23(42):4828-4850. doi: 10.1002/adma.201100984
    [3] Larcher D, Tarascon J M. Towards greener and more sustainable batteries for electrical energy storage[J]. Nature Chemistry,2015,7(1):19-29. doi: 10.1038/nchem.2085
    [4] Tang H, Yao J J, Zhu Y R. Recent developments and future prospects for zinc-ion hybrid capacitors: a review[J]. Advanced Energy Materials,2021,11(14):2003994. doi: 10.1002/aenm.202003994
    [5] Wang H, Ye W, Yang Y, et al. Zn-ion hybrid supercapacitors: Achievements, challenges and future perspectives[J]. Nano Energy,2021,85:105942. doi: 10.1016/j.nanoen.2021.105942
    [6] Li Z, Gadipelli S, Li H, et al. Tuning the interlayer spacing of graphene laminate films for efficient pore utilization towards compact capacitive energy storage[J]. Nature Energy,2020,5(2):160-168. doi: 10.1038/s41560-020-0560-6
    [7] Dutta S, Bhaumik A, Wu K C W. Hierarchically porous carbon derived from polymers and biomass: effect of interconnected pores on energy applications[J]. Energy & Environmental Science,2014,7(11):3574-3592.
    [8] Zhi J, Zhao W, Liu X Y, et al. Highly conductive ordered mesoporous carbon based electrodes decorated by 3D graphene and 1D silver nanowire for flexible supercapacitor[J]. Advanced Functional Materials,2014,24(14):2013-2019. doi: 10.1002/adfm.201303082
    [9] Zou K, Cai P, Wang B, et al. Insights into enhanced capacitive behavior of carbon cathode for lithium ion capacitors: The coupling of pore size and graphitization engineering[J]. Nanomicro Letters,2020,12(1):121.
    [10] Liu Q Y, Zhang H Z, Xie J H, et al. Recent progress and challenges of carbon materials for Zn-ion hybrid supercapacitors[J]. Carbon Energy,2020,2(4):521-539. doi: 10.1002/cey2.69
    [11] Jin J, Geng X, Chen Q, et al. A better Zn-ion storage device: recent progress for Zn-ion hybrid supercapacitors[J]. Nanomicro Letters,2022,14(1):64.
    [12] Ma X P, Cheng J Y, Dong L B, et al. Multivalent ion storage towards high-performance aqueous zinc-ion hybrid supercapacitors[J]. Energy Storage Materials,2019,20:335-342. doi: 10.1016/j.ensm.2018.10.020
    [13] Han P X, Xu G J, Han X Q, et al. Lithium ion capacitors in organic electrolyte system: scientific problems, material development, and key technologies[J]. Advanced Energy Materials,2018,8(26):1801243. doi: 10.1002/aenm.201801243
    [14] Dong L B, Yang W, Yang W, et al. Multivalent metal ion hybrid capacitors: A review with a focus on zinc-ion hybrid capacitors[J]. Journal of Materials Chemistry A,2019,7(23):13810-13832. doi: 10.1039/C9TA02678A
    [15] Wu S L, Chen Y T, Jiao T P, et al. An aqueous Zn-ion hybrid supercapacitor with high energy density and ultrastability up to 80000 cycles[J]. Advanced Energy Materials,2019,9(47):1902915. doi: 10.1002/aenm.201902915
    [16] Wang F, Borodin O, Gao T, et al. Highly reversible zinc metal anode for aqueous batteries[J]. Nature Materials,2018,17(6):543-549. doi: 10.1038/s41563-018-0063-z
    [17] Hao J N, Li X L, Zeng X H, et al. Deeply understanding the Zn anode behaviour and corresponding improvement strategies in different aqueous Zn-based batteries[J]. Energy & Environmental Science,2020,13(11):3917-3949.
    [18] Yuan L B, Hao J N, Kao C C, et al. Regulation methods for the Zn/electrolyte interphase and the effectiveness evaluation in aqueous Zn-ion batteries[J]. Energy & Environmental Science,2021,14(11):5669-5689.
    [19] He Y, Zhuang X, Lei C, et al. Porous carbon nanosheets: Synthetic strategies and electrochemical energy related applications[J]. Nano Today,2019,24:103-119. doi: 10.1016/j.nantod.2018.12.004
    [20] Luo X Y, Chen Y, Mo Y. A review of charge storage in porous carbon-based supercapacitors[J]. New Carbon Materials,2021,36(1):49-68. doi: 10.1016/S1872-5805(21)60004-5
    [21] Ao W, Fu J, Mao X, et al. Microwave assisted preparation of activated carbon from biomass: A review[J]. Renewable and Sustainable Energy Reviews,2018,92:958-979. doi: 10.1016/j.rser.2018.04.051
    [22] Luo X Y, Zheng H, Lai W D, et al. Defect engineering of carbons for energy conversion and storage applications[J]. Energy & Environmental Materials,2023,6:1-22. doi: 10.1002/eem2.12402
    [23] Zheng Y W, Zhao W, Jia D D, et al. Porous carbon prepared via combustion and acid treatment as flexible zinc-ion capacitor electrode material[J]. Chemical Engineering Journal,2020,387:124161. doi: 10.1016/j.cej.2020.124161
    [24] Wang Y G, Xia Y Y. Recent progress in supercapacitors: from materials design to system construction[J]. Advanced Materials,2013,25(37):5336-5342. doi: 10.1002/adma.201301932
    [25] Tang X N, Liu C Z, Chen X R, et al. Graphene aerogel derived by purification-free graphite oxide for high performance supercapacitor electrodes[J]. Carbon,2019,146:147-154. doi: 10.1016/j.carbon.2019.01.096
    [26] Shao Y Y, Sun Z T, Tian Z N, et al. Regulating oxygen substituents with optimized redox activity in chemically reduced graphene oxide for aqueous Zn‐ion hybrid capacitor[J]. Advanced Functional Materials,2020,31(6):2007843.
    [27] Lin Z Y, Liu Y, Yao Y G, et al. Superior capacitance of functionalized graphene[J]. The Journal of Physical Chemistry C,2011,115(14):7120-7125. doi: 10.1021/jp2007073
    [28] Hu P Y, Luo X Y, Hu T Z, et al. Ethanol solvent used in constructing ultra-low-temperature zinc ion capacitors with a long cycling life[J]. ACS Applied Materials & Interfaces,2023,15:5180-5190.
    [29] Sevilla M, Mokaya R. Energy storage applications of activated carbons: supercapacitors and hydrogen storage[J]. Energy & Environmental Science,2014,7(4):1250-1280. doi: 10.1039/c3ee43525c
    [30] Wu J P, Liu R R, Li M, et al. Boosting effects of hydroxyl groups on porous carbon for improved aqueous zinc-ion capacitors[J]. Journal of Energy Storage,2022,48:103996. doi: 10.1016/j.est.2022.103996
    [31] Raymundo-Piñero E, Kierzek K, Machnikowski J, et al. Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes[J]. Carbon,2006,44(12):2498-2507. doi: 10.1016/j.carbon.2006.05.022
    [32] Shi X, Zhang H Z, Zeng S Q S, et al. Pyrrolic-dominated nitrogen redox enhances reaction kinetics of pitch-derived carbon materials in aqueous zinc ion hybrid supercapacitors[J]. ACS Materials Letters,2021,3(9):1291-1299. doi: 10.1021/acsmaterialslett.1c00325
    [33] Zhang X R, Yang S, Jiang Y H, et al. Multi-dimensional graded electrodes with enhanced capacitance and superior cyclic stability[J]. Journal of Power Sources,2021,481:228911. doi: 10.1016/j.jpowsour.2020.228911
    [34] Li X R, Jiang Y H, Wang P Z, et al. Effect of the oxygen functional groups of activated carbon on its electrochemical performance for supercapacitors[J]. New Carbon Materials,2020,35(3):232-243. doi: 10.1016/S1872-5805(20)60487-5
    [35] Li J X, Han K H, Wang D, et al. Fabrication of high performance structural N-doped hierarchical porous carbon for supercapacitors[J]. Carbon,2020,164:42-50. doi: 10.1016/j.carbon.2020.03.044
    [36] Zhong H M, Wang T T, Chen Y, et al. Understanding alkaline hydrogen evolution promoted by mesopores in three-dimensional graphene-like materials from perspective of capacitance effects[J]. Carbon,2022,199:13-22. doi: 10.1016/j.carbon.2022.07.054
    [37] Zhang H Z, Liu Q Y, Fang Y B, et al. Boosting Zn-ion energy storage capability of hierarchically porous carbon by promoting chemical adsorption[J]. Advanced Materials,2019,31(44):1904948. doi: 10.1002/adma.201904948
    [38] Li Y, Yang W, Yang W, et al. Towards high-energy and anti-self-discharge Zn-ion hybrid supercapacitors with new understanding of the electrochemistry[J]. Nanomicro Letters,2021,13(1):95.
    [39] Jiang Y Q, Liu J P. Definitions of pseudocapacitive materials: A brief review[J]. Energy & Environmental Materials,2019,2(1):30-37.
    [40] Yin J, Zhang W L, Wang W X, et al. Electrochemical zinc ion capacitors enhanced by redox reactions of porous carbon cathodes[J]. Advanced Energy Materials,2020,10(37):2001705. doi: 10.1002/aenm.202001705
    [41] Yang B J, Chen J T, Liu L Y, et al. 3D nitrogen-doped framework carbon for high-performance potassium ion hybrid capacitor[J]. Energy Storage Materials,2019,23:522-529. doi: 10.1016/j.ensm.2019.04.008
    [42] Huo S, Zhao Y, Zong M, et al. Boosting supercapacitor and capacitive deionization performance of hierarchically porous carbon by polar surface and structural engineering[J]. Journal of Materials Chemistry A,2020,8(5):2505-2517. doi: 10.1039/C9TA12170F
    [43] Wang H, Wang M, Tang Y B. A novel zinc-ion hybrid supercapacitor for long-life and low-cost energy storage applications[J]. Energy Storage Materials,2018,13:1-7. doi: 10.1016/j.ensm.2017.12.022
    [44] Zhang H Z, Fang Y B, Yang F, et al. Aromatic organic molecular crystal with enhanced π–π stacking interaction for ultrafast Zn-ion storage[J]. Energy & Environmental Science,2020,13(8):2515-2523.
    [45] Chen S M, Ma L T, Zhang K, et al. A flexible solid-state zinc ion hybrid supercapacitor based on co-polymer derived hollow carbon spheres[J]. Journal of Materials Chemistry A,2019,7(13):7784-7790. doi: 10.1039/C9TA00733D
    [46] Dong S Y, Shen L F, Li H S, et al. Flexible sodium-ion pseudocapacitors based on 3D Na2Ti3O7 nanosheet arrays/carbon textiles anodes[J]. Advanced Functional Materials,2016,26(21):3703-3710. doi: 10.1002/adfm.201600264
    [47] Dong X L, Chen L, Su X L, et al. Flexible aqueous lithium-ion battery with high safety and large volumetric energy density[J]. Angewandte Chemie International Edition,2016,55(26):7474-7477. doi: 10.1002/anie.201602766
    [48] Zeng Y X, Lin Z Q, Meng Y, et al. Flexible ultrafast aqueous rechargeable Ni//Bi battery based on highly durable single-crystalline bismuth nanostructured anode[J]. Advanced Materials,2016,28(41):9188-9195. doi: 10.1002/adma.201603304
    [49] Wang Z Q, Zhou M, Qin L P, et al. Simultaneous regulation of cations and anions in an electrolyte for high-capacity, high-stability aqueous zinc-vanadium batteries[J]. eScience,2022,2(2):209-218. doi: 10.1016/j.esci.2022.03.002
    [50] Xiong D B, Li X F, Shan H, et al. Controllable oxygenic functional groups of metal-free cathodes for high performance lithium ion batteries[J]. Journal of Materials Chemistry A,2015,3(21):11376-11386. doi: 10.1039/C5TA01574J
    [51] Yuan S T, Huang X H, Wang H, et al. Structure evolution of oxygen removal from porous carbon for optimizing supercapacitor performance[J]. Journal of Energy Chemistry,2020,51:396-404. doi: 10.1016/j.jechem.2020.04.004
    [52] Phattharasupakun N, Wutthiprom J, Suktha P, et al. High-performance supercapacitors of carboxylate-modified hollow carbon nanospheres coated on flexible carbon fibre paper: Effects of oxygen-containing group contents, electrolytes and operating temperature[J]. Electrochimica Acta,2017,238:64-73. doi: 10.1016/j.electacta.2017.03.208
    [53] Ternero-Hidalgo J J, Rosas J M, Palomo J, et al. Functionalization of activated carbons by HNO3 treatment: Influence of phosphorus surface groups[J]. Carbon,2016,101:409-419. doi: 10.1016/j.carbon.2016.02.015
    [54] Wang G M, Wang H Y, Lu X H, et al. Solid-state supercapacitor based on activated carbon cloths exhibits excellent rate capability[J]. Advanced Materials,2014,26(17):2676-2682. doi: 10.1002/adma.201304756
    [55] Liu C, Wu J C, Zhou H, et al. Great enhancement of carbon energy storage through narrow pores and hydrogen-containing functional groups for aqueous Zn-ion hybrid supercapacitor[J]. Molecules,2019,24(14):2589. doi: 10.3390/molecules24142589
    [56] Ha S H, Jeong Y S, Lee Y J. Free standing reduced graphene oxide film cathodes for lithium ion batteries[J]. ACS Applied Materials & Interfaces,2013,5(23):12295-12303.
    [57] Zou K Y, Cai P, Deng X L, et al. Highly stable zinc metal anode enabled by oxygen functional groups for advanced Zn-ion supercapacitors[J]. Chemical Communications,2021,57(4):528-531. doi: 10.1039/D0CC07526D
    [58] Chen C M, Zhang Q, Yang M G, et al. Structural evolution during annealing of thermally reduced graphene nanosheets for application in supercapacitors[J]. Carbon,2012,50(10):3572-3584. doi: 10.1016/j.carbon.2012.03.029
    [59] Burgess R, Buono C, Davies P R, et al. The functionalisation of graphite surfaces with nitric acid: Identification of functional groups and their effects on gold deposition[J]. Journal of Catalysis,2015,323:10-18. doi: 10.1016/j.jcat.2014.12.021
    [60] Sun T, Li Z J, Zhi Y F, et al. Poly(2, 5-Dihydroxy-1, 4-Benzoquinonyl Sulfide) as an efficient cathode for high-performance aqueous zinc-organic batteries[J]. Advanced Functional Materials,2021,31(16):2010049. doi: 10.1002/adfm.202010049
    [61] Lee J, Abbas M A, Bang J H. Exploring the capacitive behavior of carbon functionalized with cyclic ethers: A rational strategy to exploit oxygen functional groups for enhanced capacitive performance[J]. ACS Applied Materials & Interfaces,2019,11(15):14126-14135.
    [62] Wu K H, Wang D W, Gentle I R. Revisiting oxygen reduction reaction on oxidized and unzipped carbon nanotubes[J]. Carbon,2015,81:295-304. doi: 10.1016/j.carbon.2014.09.060
    [63] Deng X Y, Li J J, Shan Z, et al. N, O co-doped hierarchical carbon cathode for high-performance Zn-ion hybrid supercapacitors with enhanced pseudocapacitance[J]. Journal of Materials Chemistry A,2020,8(23):11617-11625. doi: 10.1039/D0TA02770G
  • Supporting Information2023-0030.pdf
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  243
  • HTML全文浏览量:  105
  • PDF下载量:  99
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-21
  • 录用日期:  2023-03-24
  • 修回日期:  2023-03-23
  • 网络出版日期:  2023-03-31
  • 刊出日期:  2023-06-01

目录

    /

    返回文章
    返回