留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

合成方式对单壁碳纳米管基电极材料结构及电化学性能的影响

王颖慧 邱汉迅 王钊 李静 申潇 杨俊和

王颖慧, 邱汉迅, 王钊, 李静, 申潇, 杨俊和. 合成方式对单壁碳纳米管基电极材料结构及电化学性能的影响. 新型炭材料, 2015, 30(3): 214-221.
引用本文: 王颖慧, 邱汉迅, 王钊, 李静, 申潇, 杨俊和. 合成方式对单壁碳纳米管基电极材料结构及电化学性能的影响. 新型炭材料, 2015, 30(3): 214-221.
WANG Ying-hui, QIU Han-xun, WANG Zhao, LI Jing, SHEN Xiao, YANG Jun-he. Synthesis of SWCNT-GO/MnO2 nanocomposites for use as electrodes of electrochemical capacitors by microwave and hydrothermal methods. New Carbon Mater., 2015, 30(3): 214-221.
Citation: WANG Ying-hui, QIU Han-xun, WANG Zhao, LI Jing, SHEN Xiao, YANG Jun-he. Synthesis of SWCNT-GO/MnO2 nanocomposites for use as electrodes of electrochemical capacitors by microwave and hydrothermal methods. New Carbon Mater., 2015, 30(3): 214-221.

合成方式对单壁碳纳米管基电极材料结构及电化学性能的影响

基金项目: 国家自然科学基金项目(51102167,U1260104); 上海市浦江人才计划项目(11PJ1407200); 上海市教委科技创新项目(12YZ101).
详细信息
    作者简介:

    王颖慧,硕士研究生. E-mail: zhimeng1013@163.com

    通讯作者:

    邱汉迅, 副教授. E-mail: hxqiu@usst.edu.cn; 杨俊和,教授. E-mail: jhyang@usst.edu.cn

  • 中图分类号: TB33

Synthesis of SWCNT-GO/MnO2 nanocomposites for use as electrodes of electrochemical capacitors by microwave and hydrothermal methods

Funds: National Natural Science Foundation of China (51102167, U1260104); Shanghai Technology Talents Funds (11PJ1407200); Innovation Program of Shanghai Municipal Education Commission Program of China (12YZ101).
  • 摘要: 采用单壁碳纳米管作为合成电容器电极材料的基础原料,以氧化石墨烯提高单壁碳纳米管的分散性,以二氧化锰来增强其比电容,分别采用微波处理与传统水热法合成复合材料,重点探讨不同合成方式对电极材料结构及性能的影响。与传统水热法相比,微波法除了具有操作简便、加热时间短等优点外,合成的复合材料具有更均一的微观结构,且更加均匀的覆盖在碳质材料的表面,因而作为超级电容器电极材料时能表现出更优良的电学性能:在0.2A/g的电流密度下,其比电容达173F/g,比传统水热法合成的材料高出24.5%;具有更低的电荷转移电阻,仅为1.425Ω;更高的充放电稳定性,在20mV/s的扫描速率下循环1000次,电容损失率仅为3.74%。
  • Im C, Yun Y S, Kim B, et al. Amorphous carbon nanotube/MnO2/graphene oxide ternary composite electrodes for electrochemical capacitors
    [J]. Journal of Nanoscience and Nanotechnology, 2013, 13(3): 1765-1768.
    ZHENG Dong-fang, JIA Meng-Qiou, XU Bin, et al. The simple preparation of a hierarchical porous carbon with high surface area for high performance supercapacitors
    [J]. New Carbon Materials, 2013, 28(2): 151-154. (郑冬芳, 贾梦秋,徐 斌,等. 高性能超级电容器用高比表面积、层次孔结构炭材料的简便制备
    [J].新型炭材料, 2013, 28(2): 151-154.)
    Ye J S, Liu X, Cui H F, et al. Electrochemical oxidation of multi-walled carbon nanotubes and its application to electrochemical double layer capacitors
    [J]. Electrochemistry Communications, 2005, 7(3): 249-255.
    An K H,Kim W S,Park Y S.Supercapacitors using single-walled carbon nanotube electrodes
    [J]. Advanced Materials, 2006, 13(7): 497-500.
    Liu Z, Dong X, Song L, et al. Carboxylation of multiwalled carbon nanotube enhanced its biocompatibility with L02 cells through decreased activation of mitochondrial apoptotic pathway
    [J]. Journal of Biomedical Materials Research Part A, 2014, 102(3): 665-673.
    Kim I H, Kim J H, Lee Y H, et al. Synthesis and characterization of electrochemically prepared ruthenium oxide on carbon nanotube film substrate for supercapacitor applications
    [J]. Journal of the Electrochemical Society, 2005, 152(11): A2170-A2178.
    Kim I H, Kim J H, Cho B W, et al. Synthesis and electrochemical characterization of vanadium oxide on carbon nanotube film substrate for pseudocapacitor applications
    [J]. Journal of the Electrochemical Society, 2006, 153(6): A989-A996.
    Jin Y, Chen H, Chen M, et al. Graphene-patched CNT/MnO2 nanocomposite papers for the electrode of high-performance flexible asymmetric supercapacitors
    [J]. ACS Applied Materials & Interfaces, 2013, 5(8): 3408-3416.
    Ghosh A, Lee Y H. Carbon-based electrochemical capacitors
    [J]. Chem Sus Chem, 2012, 5(3): 480-499.
    Han P, Yue Y, Liu Z, et al. Graphene oxide nanosheets/multi-walled carbon nanotubes hybrid as an excellent electrocatalytic material towards VO2+/VO2+ redox couples for vanadium redox flow batteries
    [J]. Energy & Environmental Science, 2011, 4(11): 4710-4717.
    You B, Li N, Zhu H, et al. Graphene oxide-dispersed Pristine CNTs Support for MnO2 nanorods as high performance supercapacitor electrodes
    [J]. Chem Sus Chem, 2013, 6(3): 474-480.
    Meher S K, Rao G R. Enhanced activity of microwave synthesized hierarchical MnO2 for high performance supercapacitor applications
    [J]. Journal of Power Sources, 2012, 215: 317-328.
    Bilecka I, Niederberger M. Microwave chemistry for inorganic nanomaterials synthesis
    [J]. Nanoscale, 2010, 2(8): 1358-1374.
    Hung C J, Lin P, Tseng T Y. Electrophoretic fabrication and pseudocapacitive properties of graphene/manganese oxide/carbon nanotube nanocomposites
    [J]. Journal of Power Sources, 2013, 243: 594-602.
    Brousse T, Toupin M, Dugas R, et al. Crystalline MnO2 as possible alternatives to amorphous compounds in electrochemical supercapacitors
    [J]. Journal of the Electrochemical Society, 2006, 153(12): A2171-A2180.
    Cheng Y, Lu S, Zhang H, et al. Synergistic effects from graphene and carbon nanotubes enable flexible and robust electrodes for high-performance supercapacitors
    [J]. Nano Letters, 2012, 12(8): 4206-4211.
    Kundu M, Liu L. Direct growth of mesoporous MnO2 nanosheet arrays on nickel foam current collectors for high-performance pseudocapacitors
    [J]. Journal of Power Sources, 2013, 243: 676-681.
    Li Z, Mi Y, Liu X, et al. Flexible graphene/MnO2 composite papers for supercapacitor electrodes
    [J]. J Mater Chem, 2011, 21(38): 14706-14711.
    Jin Y, Chen H, Chen M, et al. Graphene-patched CNT/MnO2 nanocomposite papers for the electrode of high-performance flexible asymmetric supercapacitors
    [J]. ACS Applied Materials & Interfaces, 2013, 5(8): 3408-3416.
    Lee S W, Kim J, Chen S, et al. Carbon nanotube/manganese oxide ultrathin film electrodes for electrochemical capacitors
    [J]. ACS Nano, 2010, 4(7): 3889-3896.
    Meher S K, Justin P, Rao G R. Pine-cone morphology and pseudocapacitive behavior of nanoporous nickel oxide
    [J]. Electrochimica Acta, 2010, 55(28): 8388-8396.
    Zhao X, Sánchez B M, Dobson P J, et al. The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices
    [J]. Nanoscale, 2011, 3(3): 839-855.
    Hou Y, Cheng Y, Hobson T, et al. Design and synthesis of hierarchical MnO2 nanospheres/carbon nanotubes/conducting polymer ternary composite for high performance electrochemical electrodes
    [J]. Nano Letters, 2010, 10(7): 2727-2733.
  • 加载中
计量
  • 文章访问数:  856
  • HTML全文浏览量:  137
  • PDF下载量:  826
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-10
  • 录用日期:  2015-09-07
  • 修回日期:  2015-06-02
  • 刊出日期:  2015-06-28

目录

    /

    返回文章
    返回