留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微波法合成SiC纳米线及其光致发光性质

黄珊 王继刚 刘松 张玥晨 钱柳 梁杰

黄珊, 王继刚, 刘松, 张玥晨, 钱柳, 梁杰. 微波法合成SiC纳米线及其光致发光性质. 新型炭材料, 2015, 30(3): 230-235.
引用本文: 黄珊, 王继刚, 刘松, 张玥晨, 钱柳, 梁杰. 微波法合成SiC纳米线及其光致发光性质. 新型炭材料, 2015, 30(3): 230-235.
HUANG Shan, WANG Ji-gang, LIU Song, ZHANG Yue-chen, QIAN Liu, LIANG Jie. Structural characterization and photoluminescence properties of SiC nanowires prepared by microwave method. New Carbon Mater., 2015, 30(3): 230-235.
Citation: HUANG Shan, WANG Ji-gang, LIU Song, ZHANG Yue-chen, QIAN Liu, LIANG Jie. Structural characterization and photoluminescence properties of SiC nanowires prepared by microwave method. New Carbon Mater., 2015, 30(3): 230-235.

微波法合成SiC纳米线及其光致发光性质

基金项目: 新世纪优秀人才支持计划; 西藏自治区重点科技项目; 江苏省"青蓝工程"(NCET-12-0119);"六大人才高峰"(2013-JY-007).
详细信息
    通讯作者:

    王继刚,教授. E-mail: wangjigang@seu.edu.cn

  • 中图分类号: TQ127.1+1

Structural characterization and photoluminescence properties of SiC nanowires prepared by microwave method

Funds: Program for New Century Excellent Talents in University; Key Project of Science and Technology of Tibet Autonomous Region; Qing-lan Project of Jiangsu Province (NECT-12-0119); Summit of the Six Top Talents Program of Jiangsu Province (2013-JY-007).
  • 摘要: 以Si粉、SiO2粉和人造石墨为原料,在1480℃、4kW、80min的真空微波辐照条件下快速高效地合成SiC纳米线。利用SEM、TEM、XRD等对所得产物的微观结构解析表明,在未使用催化剂的条件下,基于气固(VS)机制可成功制备出β型SiC。根据坩埚中的部位不同,所得SiC呈现出不同的形貌。坩埚上层的产物呈亮绿色,较为纯净,主要为直径约150nm的纳米棒,并含有部分微米级SiC晶粒,表面氧化迹象不明显。其余部分产物呈灰绿色,主要是直径为20~50nm的SiC/SiO2同轴纳米线(表层的SiO2厚度约2nm),并夹杂有未反应完全的石墨和SiO2。利用波长为240nm的激发光分别对SiC纳米棒和同轴纳米线的光致发光特性的测试表明,两者均可观察到峰位在390nm左右的发射峰,此结果与所报道的β-SiC纳米材料的发光性能相比,蓝移程度更高。
  • Magyar A P, Aharonovich I, Baram M, et al. Photoluminescent SiC tetrapods
    [J]. Nano Letters, 2013, 13: 1210-1215.
    Feng D H, Jia T Q, Li X X, et al. Catalytic synthesis and photoluminescence of needle-shaped 3C-SiC nanowires
    [J]. Solid State Communications, 2003, 128: 295-297.
    Fan J Y, Wu X L, Chu P K. Low-dimensional SiC nanostructures: fabrication, luminescence, and electrical properties
    [J]. Progress in Materials Science, 2006, 51: 983-1031.
    Dai H J, Wong E W, Lu Y Z, et al. Synthesis and characterization of carbon nanorods
    [J]. Science, 1995, 375: 769-772.
    Liu Dong, Yu Yan, Zhang Qiu-hui, et al. Formation of SiC nano-micro rods from silica-col infiltrated bamboo charcoal through carbothermal reduction
    [J]. New Carbon Materials, 2011, 26: 435-440. (刘 冬, 余 雁, 张求慧, 等. 竹炭为模板高温法SiC微纳米棒
    [J]. 新型炭材料, 2011, 26: 435-440.)
    Wu Xiang-yang, Jin Guo-qiang, Guo Xiang-yun. Effects of the amounts of Fe catalyst on stacking faults and morphologies of β-SiC
    [J]. New Carbon Materials, 2005, 20: 324-329. (武向阳, 靳国强, 郭向云. 溶胶-凝胶中Fe催化剂用量对β-SiC堆积缺陷和形貌的影响
    [J]. 新型炭材料, 2005, 20: 324-329.)
    Shen G Z, Bando Y, Ye C H, et al. Synthesis, characterization and field-emission properties of bamboo-like β-SiC nanowires
    [J]. Nanotechnology, 2006, 17: 3468-3472.
    Wang F, Wang Q S, Cui Q L, et al. Self-catalytic synthesis of β-SiC nanowires by direct current arc discharge
    [J]. Chinese Journal of Inorganic Chemistry, 2009, 25: 1026-1030.
    Lu Bing, Liu Ji-xuan, Zhu Hua-wei, et al. Studies on synthesis of SiC nanowires prepared by microwave method
    [J]. Journal of Inorganic Materials, 2007, 22: 1135-1138. (卢 斌, 刘吉轩, 朱华伟, 等. 微波加热合成SiC纳米线的研究
    [J]. 无机材料学报, 2007, 22: 1135-1138.)
    Wei Guo-dong. Synthesis and properties of SiC one-dimensional nanomaterials by microwave-assisted method
    [D]. Jilin University, 2009: 67-68. (尉国栋. 微波辅助法合成碳化硅一维纳米材料及其性质的研究
    [D]. 吉林大学, 2009: 67-68.)
    Zhang L G, Yang W Y, Jin H, et al. Ultraviolet photoluminescence from 3C-SiC nanorods
    [J]. Applied Physics Letters, 2006, 89: 143101-143103.
    Huang Shan, Wang Ji-gang, Liu Song, et al. Study on the growth process of SiC grains prepared by high-energy microwave irradiation
    [J]. Journal of Inorganic Materials, 2014, 29: 149-154. (黄 珊, 王继刚, 刘 松, 等. 高能微波辐照条件下SiC晶粒的生长过程分析
    [J]. 无机材料学报, 2014, 29: 149-154.)
    Ryu Y W, Tak Y, Yong K J. Direct growth of core-shell SiC-SiO2 nanowires and field emission characteristics
    [J]. Nanotechnology, 2005, 16: 370-374.
    Meng A, Li Z J, Zhang J L, et al. Synthesis and raman scattering of β-SiC/SiO2 core-shell nanowires
    [J]. Journal of Crystal Growth, 2007, 308: 263-268.
    Wang J G, Liu S, Ding T, et al. Synthesis, characterization, and photoluminescence properties of bulk-quantity β-SiC/SiOx coaxial nanowires
    [J]. Materials Chemistry and Physics, 2012, 135: 1005-1011.
    Seo W S, Koumoto K. Stacking faults in β-SiC formed during carbothermal reduction of SiO2
    [J]. Journal of the American Ceramic Society, 1996, 79: 1777-1782.
    Zhang R Q, Lifshitz Y, Lee S T. Oxide-assisted frowth of semiconducting nanowires
    [J]. Advanced Materials, 2003, 15: 635-640.
    Wu L L. Synthesis, measurement and characterization of SiC one-dimensional nanomaterials
    [D]. Zhejiang University, 2007: 26-27, 53-55. (吴玲玲. 一维SiC纳米材料的合成制备与测试表征
    [D]. 浙江大学, 2007: 26-27, 53-55.)
    Wei J, Li K Z, Li H J, et al. Photoluminescence performance of SiC nanowires, whiskers and agglomerated nanoparticals synthesized from actived carbon
    [J]. Physica E, 2009, 41: 1616-1620.
    Niu J J, Wang J N. A simple route to synthesize scales of aligned single-crystalline SiC nanowires arrays with very small diameter and optical properties
    [J]. Physica B, 2007, 111: 4368-4373.
    Hu J Q, Bando Y, Zhan J H, et al. Fabrication of ZnS/SiC nanocables, SiC-shelled ZnS nanoribbons (and sheets), and SiC nanotubes(and tubes)
    [J]. Applied Physica Letters, 2004, 85: 2932-2934.
  • 加载中
计量
  • 文章访问数:  614
  • HTML全文浏览量:  64
  • PDF下载量:  715
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-30
  • 录用日期:  2015-09-07
  • 修回日期:  2015-05-07
  • 刊出日期:  2015-06-28

目录

    /

    返回文章
    返回