留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

富氮多孔纳米炭纤维的制备及其用作超级电容器电极材料

马昌 史景利 李亚娟 宋燕 刘朗

马昌, 史景利, 李亚娟, 宋燕, 刘朗. 富氮多孔纳米炭纤维的制备及其用作超级电容器电极材料. 新型炭材料, 2015, 30(4): 295-301.
引用本文: 马昌, 史景利, 李亚娟, 宋燕, 刘朗. 富氮多孔纳米炭纤维的制备及其用作超级电容器电极材料. 新型炭材料, 2015, 30(4): 295-301.
MA Chang, SHI Jing-li, LI Ya-juan, SONG Yan, LIU Lang. Preparation of nitrogen-enriched porous carbon nanofibers and their electrochemical performance as electrode materials of supercapacitors. New Carbon Mater., 2015, 30(4): 295-301.
Citation: MA Chang, SHI Jing-li, LI Ya-juan, SONG Yan, LIU Lang. Preparation of nitrogen-enriched porous carbon nanofibers and their electrochemical performance as electrode materials of supercapacitors. New Carbon Mater., 2015, 30(4): 295-301.

富氮多孔纳米炭纤维的制备及其用作超级电容器电极材料

基金项目: 山西省自然科学基金 (2012011219-3).
详细信息
    作者简介:

    马昌,博士,讲师.E-mail:fdoy_lt54@163.com

    通讯作者:

    史景利.E-mail:shijingli1963@163.com;宋燕.E-mail:songyan1026@126.com

  • 中图分类号: TQ127.1+1

Preparation of nitrogen-enriched porous carbon nanofibers and their electrochemical performance as electrode materials of supercapacitors

Funds: National Natural Science Foundation of Shanxi Province, China(2012011219-3).
  • 摘要: 以商业聚酰亚胺树脂为前驱体,经过静电纺丝和一步炭化制备出富含氮原子的纳米炭纤维,采用扫描电镜、低温氮吸附和XPS等手段对纳米炭纤维的结构进行表征,考察不同炭化温度下纳米炭纤维的孔结构与表面含氮官能团的演变。结果显示,所得聚酰亚胺纤维经过一步高温处理便可得到微孔发达且富含氮原子的纳米炭纤维。随着炭化温度的升高,纳米炭纤维的比表面积与氮含量均逐渐降低。700 ℃炭化得到的纳米炭纤维的比表面积达到447 m2/g、纤维平均直径为234 nm、表面氮含量达到4.1%。将所得纳米炭纤维直接用作超级电容器电极,采用循环伏安法、恒流充放电和交流阻抗对其电化学性能进行考察。所得富氮纳米炭纤维表现出优异的电容量和表面电化学活性,其比电容达到214 F/g,单位比表面的电容量达到0.57 F/m2
  • Dong Z, Kennedy S J, Wu Y. Electrospinning materials for energy-related applications and devices
    [J]. Journal of Power Sources, 2011, 196(11): 4886-4904.
    Qie L, Chen W M, Wang Z H, et al. Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability
    [J]. Advanced Materials, 2012, 24(15): 2047-2050.
    Xiaojiao W, Chuanxiang Z, Baolin X. Research progress in the nitrogen'containing porous carbon electrode materials for supercapacitor
    [J]. Materials Review, 2011, 25(4): 24-32.
    Shuang L, Yan S, Chang M, et al. The electrochemical performance of porous carbon nanofibers produced by electrospinning
    [J]. New Carbon Materials, 2012, 27(2): 129-134.
    Ra EJ, Raymundo-Piñero E, Lee YH, et al. High power supercapacitors using polyacrylonitrile-based carbon nanofiber paper
    [J]. Carbon, 2009, 47(13): 2984-2992.
    Ma C, Song Y, Shi J, et al. Preparation and electrochemical performance of heteroatom-enriched electrospun carbon nanofibers from melamine formaldehyde resin
    [J]. Journal of Colloid and Interface Science, 2013, 395(0): 217-223.
    Kim C, Choi YO, Lee WJ, et al. Supercapacitor performances of activated carbon fiber webs prepared by electrospinning of PMDA-ODA poly(amic acid) solutions
    [J]. Electrochimica Acta, 2004, 50(2-3): 883-887.
    Guo P, Gu Y, Lei Z, et al. Preparation of sucrose-based microporous carbons and their application as electrode materials for supercapacitors
    [J]. Microporous and Mesoporous Materials, 2012, 156(0): 176-180.
    Wang H, Gao Q, Hu J, et al. High performance of nanoporous carbon in cryogenic hydrogen storage and electrochemical capacitance
    [J]. Carbon, 2009, 47(9): 2259-2268.
    Xie J, Wang X, Deng J. Modifying the pore structure of Pit-ACF with the chemical vapor deposition of methane and propylene
    [J]. Microporous and Mesoporous Materials, 2004, 76(1-3): 167-175.
    Shuo Z, Cheng-Yang W, Ming-Ming C, et al. Preparation and electrochemical performance of polyimide derived activated carbon
    [J]. Jounal of Inorganicl Materials, 2008, 23(5): 923-927.
    Kim YJ, Abe Y, Yanagiura T, et al. Easy preparation of nitrogen-enriched carbon materials from peptides of silk fibroins and their use to produce a high volumetric energy density in supercapacitors
    [J]. Carbon, 2007, 45(10): 2116-2125.
    Raymundo-Piñero E, Cazorla-Amorós D, Linares-Solano A, et al. Structural characterization of N-containing activated carbon fibers prepared from a low softening point petroleum pitch and a melamine resin
    [J]. Carbon, 2002, 40(4): 597-608.
    Seredych M, Hulicova-Jurcakova D, Lu G Q, et al. Surface functional groups of carbons and the effects of their chemical character, density and accessibility to ions on electrochemical performance
    [J]. Carbon, 2008, 46(11): 1475-1488.
    Zhou J H, Sui Z J, Zhu J, et al. Characterization of surface oxygen complexes on carbon nanofibers by TPD, XPS and FT-IR
    [J]. Carbon, 2007, 45(4): 785-796.
    Kwon T, Nishihara H, Itoi H, et al. Enhancement mechanism of electrochemical capacitance in nitrogen-/Boron-doped carbons with uniform straight nanochannels
    [J]. Langmuir, 2009, 25(19): 11961-11968.
    Zhu Y, Hu H, Li W, et al. Resorcinol-formaldehyde based porous carbon as an electrode material for supercapacitors
    [J]. Carbon, 2007, 45(1): 160-165.
    Qu D. Studies of the activated carbons used in double-layer supercapacitors
    [J]. Journal of Power Sources, 2002, 109(2): 403-411.
    Chmiola J, Yushin G, Gogotsi Y, et al. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer
    [J]. Science, 2006, 313(5794): 1760-1763.
    Zhao L, Fan LZ, Zhou MQ, et al. Nitrogen-containing hydrothermal carbons with superior performance in supercapacitors
    [J]. Advanced Materials, 2010, 22(45): 5202-5206.
  • 加载中
计量
  • 文章访问数:  560
  • HTML全文浏览量:  81
  • PDF下载量:  713
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-30
  • 录用日期:  2015-09-07
  • 修回日期:  2015-07-05
  • 刊出日期:  2015-08-28

目录

    /

    返回文章
    返回