留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

层次孔活性炭气凝胶/硫复合正极材料的制备及其电化学性能

唐志伟 徐飞 梁业如 吴丁财 符若文

唐志伟, 徐飞, 梁业如, 吴丁财, 符若文. 层次孔活性炭气凝胶/硫复合正极材料的制备及其电化学性能. 新型炭材料, 2015, 30(4): 319-326.
引用本文: 唐志伟, 徐飞, 梁业如, 吴丁财, 符若文. 层次孔活性炭气凝胶/硫复合正极材料的制备及其电化学性能. 新型炭材料, 2015, 30(4): 319-326.
TANG Zhi-wei, XU Fei, LIANG Ye-ru, WU Ding-cai, FU Ruo-wen. Preparation and electrochemical performance of a hierarchically porous activated carbon aerogel /sulfur cathode for lithium-sulfur batteries. New Carbon Mater., 2015, 30(4): 319-326.
Citation: TANG Zhi-wei, XU Fei, LIANG Ye-ru, WU Ding-cai, FU Ruo-wen. Preparation and electrochemical performance of a hierarchically porous activated carbon aerogel /sulfur cathode for lithium-sulfur batteries. New Carbon Mater., 2015, 30(4): 319-326.

层次孔活性炭气凝胶/硫复合正极材料的制备及其电化学性能

详细信息
    通讯作者:

    吴丁财,教授.E-mail:wudc@mail.sysu.edu.cn;符若文,教授.E-mail:cesfrw@mail.sysu.edu.cn

  • 中图分类号: TB332

Preparation and electrochemical performance of a hierarchically porous activated carbon aerogel /sulfur cathode for lithium-sulfur batteries

  • 摘要: 以有机气凝胶RC-500为原料,采用低质量比KOH(KOH:有机气凝胶=3:1)活化的方法,900 ℃炭化活化,制备出一种具有层次孔结构的活性炭气凝胶ACA-500-3。将其作为硫载体,与单质硫在155 ℃熔融复合后制备出含硫量达66.2%的锂硫电池正极复合材料(ACA-500-3-S)。通过N2吸附、SEM、TEM、XRD和XPS等测试手段考察ACA-500-3和ACA-500-3-S的结构和形貌,并利用循环伏安、恒流充放电和交流阻抗等方法研究ACA-500-3-S的电化学性能。ACA-500-3-S在0.2 C(1 C=1 675 mA·g-1)电流密度下,初始放电比容量高达1 287 mAh·g-1,200圈后比容量保持在643 mAh·g -1,并表现出良好的倍率性能,明显优于单质硫电极。
  • Bruce P G, Freunberger S A, Hardwick L J, et al. Li-O2 and Li-S batteries with high energy storage
    [J]. Nature materials, 2012, 11(1): 19-29.
    Ji X, Lee K T, Nazar L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries
    [J]. Nature materials, 2009, 8(6): 500-506.
    Yin Y X, Xin S, Guo Y G, et al. Lithium-sulfur batteries: Electrochemistry, materials, and prospects
    [J]. Angewandte Chemie International Edition, 2013, 52(50): 13186-13200.
    Mikhaylik Y V, Akridge J R. Polysulfide shuttle study in the Li/S battery system
    [J]. Journal of the Electrochemical Society, 2004, 151(11): A1969-1976.
    Wei Seh Z, Li W, Cha J J, et al. Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries
    [J]. Nature communications, 2013, 4: 1331-1339.
    Ding B, Yuan C, Shen L, et al. Encapsulating sulfur into hierarchically ordered porous carbon as a high-performance cathode for lithium-sulfur batteries
    [J]. Chemistry-A European Journal, 2013, 19(3): 1013-1019.
    Wang J L, Xie J Y, Xu N X. A novel conductive polymer-sulfur composite cathode material for rechargeable lithium batteries
    [J]. Advanced Materials, 2002, 14: 963-965.
    Yao H, Yan K, Li W, et al. Improved lithium-sulfur batteries with a conductive coating on the separator to prevent the accumulation of inactive S-related species at the cathode-separator interface
    [J]. Energy & Environmental Science, 2014, 7(10): 3381-3390.
    Wang J, Yao Z, Monroe C W, et al. Carbonyl-β-cyclodextrin as a novel binder for sulfur composite cathodes in rechargeable lithium batteries
    [J]. Advanced Functional Materials, 2013, 23(9): 1194-1201.
    Zhao Y, Zhang Y, Gosselink D, et al. Polymer electrolytes for lithium/sulfur batteries
    [J]. Membranes, 2012, 2(3): 553-564.
    Zhang B, Qin X, Li G R, Gao X P, et al. Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres
    [J]. Energy & Environmental Science, 2010, 3(10): 1531-1540.
    Li X, Cao Y, Qi W, et al. Optimization of mesoporous carbon structures for lithium-sulfur battery applications
    [J]. Journal of Materials Chemistry, 2011, 21(41): 16603.
    Liang C, Dudney N J, Howe J Y. Hierarchically structured sulfur/carbon nanocomposite material for high-energy lithium battery
    [J]. Chemistry of Materials, 2009, 21(19): 4724-4730.
    Guo J, Xu Y, Wang C. Sulfur-impregnated disordered carbon nanotubes cathode for lithium-sulfur batteries
    [J]. Nano Letters, 2011, 11(10): 4288-4294.
    Zhou G, Pei S, Li L, et al. A graphene-pure sulfur sandwich structure for ultrafast, long-life lithium-sulfur batteries
    [J]. Advanced Materials, 2014, 26(4): 625-631.
    Wang D W, Zhou G, Li F, et al. A microporous-mesoporous carbon with graphitic structure for a high-rate stable sulfur cathode in carbonate solvent-based Li-S batteries
    [J]. Physical Chemistry Chemical Physics, 2012, 14(24): 8703-8710.
    Zhang C, Lv W, Zhang W, et al. Reduction of graphene oxide by hydrogen sulfide: A promising strategy for pollutant control and as an electrode for Li-S batteries
    [J]. Advanced Energy Materials, 2014, 4(7): 1301565-1301569.
    Li F, Lv W, Niu S, et al. Study on preparation and electrochemical performance of graphene wrapped carbon/sulphur composite cathode
    [J]. New Carbon Materials, 2014(04): 309-315. (李芳菲, 吕 伟, 牛树章, 等. 石墨烯包覆炭硫复合物正极材料的制备及其电化学性能
    [J]. 新型炭材料, 2014, 4: 309-315.)
    吴 锋, 吴生先, 陈人杰, 等. 多壁碳纳米管对单质硫正极材料电化学性能的改性
    [J]. 新型炭材料, 2010, (6): 421-425. (WU Feng, WU Sheng-xian, CHEN Ren-jie, et al. Improvement of the electrochemical properties of sulfur cathode materials with multiwalled carbon nanotubes
    [J]. New Carbon Materials, 2010, (6): 421-425.)
    Sun F, Wang J, Chen H, et al. High efficiency immobilization of sulfur on nitrogen-enriched mesoporous carbons for Li-S batteries
    [J]. ACS Applied Materials & Interfaces, 2013, 5(12): 5630-5638.
    Peng H J, Liang J, Zhu L, et al. Catalytic self-limited assembly at hard templates: A mesoscale approach to graphene nanoshells for lithium-sulfur batteries
    [J]. ACS Nano, 2014, 8(11): 11280-11289.
    Zhang C, Liu D H, Lv W, et al. A high-density graphene-sulfur assembly: A promising cathode for compact Li-S batteries
    [J]. Nanoscale, 2015, 7(13): 5592-5597.
    Wu D, Fu R, Dresselhaus M S, et al. Fabrication and nano-structure control of carbon aerogels via a microemulsion-templated sol-gel polymerization method
    [J]. Carbon, 2006, 44(4): 675-681.
    Wang J, Yang X, Wu D, et al. The porous structures of activated carbon aerogels and their effects on electrochemical performance
    [J]. Journal of Power Sources, 2008, 185(1): 589-594.
    钟 辉, 曾庆聪, 吴丁财, 等聚苯乙烯基层次孔碳的活化及其在超级电容器中的应用
    [C]. 中国化学会第15届反应性高分子学术讨论会, 中国, 烟台, 2010.
    Xin S, Gu L, Zhao N H, et al. Smaller sulfur molecules promise better lithium-sulfur batteries
    [J]. Journal of the American Chemical Society, 2012, 134(45): 18510-18513.
    陈飞彪, 王英男, 吴伯荣, 等. 锂硫电池石墨烯/硫复合正极材料的制备及其电化学性能
    [J]. 无机材料学报, 2014, 06: 627-632. (CHEN Fei-Biao, WANG Ying-Nan, WU Bo-Rong, et al. Preparation and electrochemical performance of activation graphene/sulfur complex cathode material for Lithium-sulfur batteries
    [J]. Journal of Inorganic Materials, 2014, 29(6): 627-632.)
    Zhang Z, Li Z, Hao F, et al. 3D interconnected porous carbon aerogels as sulfur immobilizers for sulfur impregnation for lithium-sulfur batteries with high rate capability and cycling stability
    [J]. Advanced Functional Materials, 2014, 24(17): 2500-2509.
    Jeon B H, Yeon J H, Kim K M, et al. Preparation and electrochemical properties of lithium-sulfur polymer batteries
    [J]. Journal of Power Sources, 2002, 109(1): 89-97.
    Yuan L, Qiu X, Chen L, et al. New insight into the discharge process of sulfur cathode by electrochemical impedance spectroscopy
    [J]. Journal of Power Sources, 2009, 189(1): 127-132.
  • 加载中
计量
  • 文章访问数:  1009
  • HTML全文浏览量:  185
  • PDF下载量:  1799
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-10
  • 录用日期:  2015-09-07
  • 修回日期:  2015-07-25
  • 刊出日期:  2015-08-28

目录

    /

    返回文章
    返回