留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

原位制备还原氧化石墨烯增强环氧树脂基复合材料及其形状记忆性能

张志毅 张焕 寿金泉 孙友谊 刘亚青

张志毅, 张焕, 寿金泉, 孙友谊, 刘亚青. 原位制备还原氧化石墨烯增强环氧树脂基复合材料及其形状记忆性能. 新型炭材料, 2015, 30(5): 404-411.
引用本文: 张志毅, 张焕, 寿金泉, 孙友谊, 刘亚青. 原位制备还原氧化石墨烯增强环氧树脂基复合材料及其形状记忆性能. 新型炭材料, 2015, 30(5): 404-411.
ZHANG Zhi-yi, ZHANG Huang, SHOU Jin-quan, SUN You-yi, LIU Ya-qing. Preparation of reduced graphene oxide-reinforced epoxy resin composites and their shape memory properties. New Carbon Mater., 2015, 30(5): 404-411.
Citation: ZHANG Zhi-yi, ZHANG Huang, SHOU Jin-quan, SUN You-yi, LIU Ya-qing. Preparation of reduced graphene oxide-reinforced epoxy resin composites and their shape memory properties. New Carbon Mater., 2015, 30(5): 404-411.

原位制备还原氧化石墨烯增强环氧树脂基复合材料及其形状记忆性能

基金项目: 国家自然科学基金(11202006).
详细信息
    作者简介:

    张志毅,博士,副教授.E-mail:zhiyzhang@sohu.com

    通讯作者:

    孙友谊,教授.E-mail:syyi2010@163.com;刘亚青,教授.E-mail:lyq@nuc.edu.cn

  • 中图分类号: TB332

Preparation of reduced graphene oxide-reinforced epoxy resin composites and their shape memory properties

Funds: National Natural Science Foundation of China(11202006).
  • 摘要: 采用原位法制备不同含量还原氧化石墨烯(rGO)/环氧树脂(EP)复合材料。研究rGO含量对rGO/EP复合材料力学性能和形状记忆性能的影响。结果表明,通过溶剂热还原,填充到环氧树脂单体中的GO原位还原成rGO,并可均匀分散在EP基体中。该复合材料的拉伸强度、弹性模量和储能模量均随rGO含量增加呈先升后降态势,在w(rGO)=0.2%(相对于环氧树脂的质量而言)时相对最大;随着rGO含量增加,复合材料的玻璃化转变温度随之增加。当w(rGO)=0.6 %时,玻璃化转变温度Tg相对纯环氧树脂提高约45℃,达到102℃,热稳定性显著提高。相应的复合材料具有良好的形状记忆性能,变形可以完全恢复,且rGO/EP复合材料相对纯环氧树脂具有更高的形状固定率与形状恢复温度。
  • Tang Z H , Sun D Q, Yang D, et al. Vapor grown carbon nanofiber reinforced bio-based polyester for electroactive shape memory performance[J]. Compos Sci Technol, 2013, 75:15-21.
    Qi G, Kristofer K Westbrook, Patrick T Mather, et al. Thermomechanical behavior of a two-way shape memory composite actuator[J]. Smart Mater Struct, 2013, 22:055009-055019.
    Marc Behl, Karl Kratz, Jorg Zotzmann, et al. Reversible bidirectional shape-memory polymers[J]. Adv Mater, 2013, 25:4466-4469.
    Pandini S, Baldi F, Paderni K, et al. One-way and two-way shape memory behaviour of semi-crystalline networks based on sole gel cross-linked poly(ε-caprolactone)[J]. Polymer, 2013, 54:4253-4265.
    Richard M Baker, James H Henderson, Patrick T Mather. Shape memory poly(3-caprolactone)-co-poly(ethylene glycol) foams with body temperature triggering and two-way actuation[J]. J Mater Chem B, 2013, 1:4916-4920.
    Chen S J, Hu J L, Zhuo H T. Properties and mechanism of two-way shape memory polyurethane composites[J]. Compos Sci Technol, 2010, 70:1437-1443.
    K S Santhosh Kumar, R Biju, C P Reghunadhan Nair. Progress in shape memory epoxy resins[J]. React Funct Polym, 2013, 73:421-430.
    Lu H B, Huang W M. Synergistic effect of self-assembled carboxylic acid-functionalized carbon nanotubes and carbon fiber for improved electro-activated polymeric shape-memory nanocomposite[J]. Appl Phys Lett, 2013, 102:231910.
    Lu H B, Liang F, Gou J H. Nanopaper enabled shape-memory nanocomposite with vertically aligned nickel nanostrand:controlled synthesis and electrical actuation[J]. Soft Matter, 2011, 7:7416-7423.
    Dorigato A, Giusti G, Bondioli F, et al. Electrically conductive epoxy nanocomposites containing carbonaceous fillers and in-situ generated silver nanoparticles[J]. Express Polym lett, 2013, 7:673-682.
    Kai Y, Amber J, Gyaneshwar P Tandon, et al. A thermomechanical constitutive model for an epoxy based shape memory polymer and its parameter identifications[J]. Mech Time-Depend Mat, 2014, 18:453-474.
    Liu K H, Chen S L, Luo Y F, et al. Edge-functionalized graphene as reinforcement of epoxy-based conductive composite for electrical interconnects[J]. Compos Sci and Technol, 2013, 88:84-91.
    Qian X D, Song L, Yu B, et al. Novel organic-inorganic flame retardants containing exfoliated graphene:Preparation and their performance on the flame retardancy of epoxy resins[J]. J Mater Chem A, 2013, 1:6822-6830.
    Chatterjee S, Wang J W,Kuo W S, et al. Mechanical reinforcement and thermal conductivity in expanded graphene nanoplatelets reinforced epoxy composites[J]. Chem Phys Lett, 2012, 531:6-10.
    Wang X,Xing W, Zhang P, et al. Covalent functionalization of graphene with organosilane and its use as a reinforcement in epoxy composites[J]. Compos Sci Technol, 2012, 72:737-743.
    Prolongo S G, Jimenez-Suarez A, Moriche R, et al. In situ processing of epoxy composites reinforced with graphene nanoplatelets[J]. Compos Sci Technol, 2013, 86:185-191.
    Shen X J , Liu Y , Xiao H M, et al. The reinforcing effect of graphene nanosheets on the cryogenic mechanical properties of epoxy resins[J]. Compos Sci Technol, 2012, 72:1581-1587.
    Li Z H. A program for SAXS data processing and analysis[J]. Chinese Physics C, 2013, 37(10):108002.
    Ahmed S Wajid, Tanvir Ahmed H S, Sriya Das, et al. High-performance pristine graphene/epoxy composites with enhanced mechanical and electrical properties[J]. Macromol Mater Eng, 2013, 298:339-347.
    Zhang Y G, Chi H J, Zhang W H, et al. Highly efficient adsorption of copper ions by a PVP-reduced graphene oxide based on a new adsorptions mechanism[J]. Nano-Micro Lett, 2014, 6:80-87.
    Zhou D, Cheng Q, Han B. Solvothermal synthesis of homogeneous graphene dispersion with high concentration[J]. Carbon, 2011, 49:3920-3927.
    He Y Q, Liu Y, Wu T, et al. An environmentally friendly method for the fabrication of reduced graphene oxide foam with a super oil absorption capacity[J]. J Hazard Mater, 2013, 260:796-805.
    Mohan Raja, A M Shanmugharaj, Sung Hun Ryu, et al. Influence of metal nanoparticle decorated CNTs on polyurethane based electro active shape memory nanocomposite actuators[J]. Mater Chem Phys, 2011, 129:925-931.
  • 加载中
计量
  • 文章访问数:  659
  • HTML全文浏览量:  107
  • PDF下载量:  847
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-21
  • 录用日期:  2015-11-10
  • 修回日期:  2015-08-03
  • 刊出日期:  2015-10-28

目录

    /

    返回文章
    返回