留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯/酚醛树脂纳米复合材料的热解行为

黄桂荣 刘洪波 杨丽 何月德 夏笑虹 陈惠

黄桂荣, 刘洪波, 杨丽, 何月德, 夏笑虹, 陈惠. 石墨烯/酚醛树脂纳米复合材料的热解行为. 新型炭材料, 2015, 30(5): 412-418.
引用本文: 黄桂荣, 刘洪波, 杨丽, 何月德, 夏笑虹, 陈惠. 石墨烯/酚醛树脂纳米复合材料的热解行为. 新型炭材料, 2015, 30(5): 412-418.
HUANG Gui-rong, LIU Hong-bo, YANG Li, HE Yue-de, XIA Xiao-hong, CHEN Hui. Pyrolysis behavior of graphene/phenolic resin composites. New Carbon Mater., 2015, 30(5): 412-418.
Citation: HUANG Gui-rong, LIU Hong-bo, YANG Li, HE Yue-de, XIA Xiao-hong, CHEN Hui. Pyrolysis behavior of graphene/phenolic resin composites. New Carbon Mater., 2015, 30(5): 412-418.

石墨烯/酚醛树脂纳米复合材料的热解行为

基金项目: 湖南省自然科学基金(10JJ3019);湖南省研究生科研创新项目(CX2011B126).
详细信息
    作者简介:

    黄桂荣,博士研究生.E-mail:Bettyh168@163.com

    通讯作者:

    刘洪波,教授.E-mail:hndxlhb@163.com

  • 中图分类号: O632.7+2

Pyrolysis behavior of graphene/phenolic resin composites

Funds: Natural Science foundation of Hunan Province(10JJ3019);Postgraduate innovative research project of Hunan Province(CX2011B126).
  • 摘要: 将氧化石墨烯与自制酚醛树脂乳液(PF)共混,经水合肼还原和热固化制备石墨烯/酚醛树脂(GNS/PF)纳米复合材料。利用AFM、SEM、FTIR和TG-DTG技术考察石墨烯对GNS/PF复合材料的形貌、结构、热稳定性和残炭率的影响。结果表明,石墨烯片均匀分布在PF中,没有发生团聚,且石墨烯片与PF间具有良好的界面结合。石墨烯薄片对PF基体强烈的吸附作用增加了PF分子链的活性和有序性,显著提高了GNS/PF纳米复合材料内PF基体的固化交联密度,进而提高了PF基体的耐热性和高温残炭率。在300~450℃条件下,纯酚醛树脂的热分解峰值温度为382.7℃,添加质量分数0.65%的GNS后,热分解峰值温度提高到408℃。在隔绝空气下900℃热处理,纯酚醛树脂的残炭率为46.2%,添加0.65%氧化石墨烯后残炭率增至59.4%,提高了13.2%。
  • Reghunadhan N C P. Advances in addition-cure phenolic resins[J]. Prog Polym Sci, 2004, 29(5):401-498.
    Tyberg C S, Sankarapandian M, Bears K, et al. Tough, void-free, flame retardant phenolic matrix materials[J]. Constr Build Mater, 1999, 13(6):343-353.
    Wang M C, Wei L H, Zhao T. A novel condensation-addition-type phenolic resin(MPN):synthesis, characterization and evaluation as matrix of composites[J]. Polymer, 2005, 46(21):9202-9210.
    刘洋,于景坤.纳米材料改性酚醛树脂及其在耐火材料中的应用[J]. 材料导报, 2010, 24(16):31-34.(LIU Yang, YU Jing-kun. Modification of Phenolic resin using nanomaterials and its application in the refractories[J]. Mater Rev, 2010, 24(16):31-34.)
    Kawamoto A M, Pardini L C, Diniz M F, et al. Synthesis of a boron modified phenolic resin[J]. J Aerosp Technol Manag, 2010, 2(2):169-182.
    Kim H J, Brunovska Z, Ishida H. Synthesis and thermal characterization of polybenzoxazines based on acetylene-functional monomers[J]. Polymer, 1999, 40(23):6565-6573.
    廖庆玲.纳米颗粒改性酚醛树脂的研究[D]. 武汉:武汉科技大学, 2005, 37.(LIAO Qing-ling. The research on phenolic resin modified by nanoparticles[D]. WuHan Science and technology University, 2005, 37.)
    Liu L, Ye Z P. Effects of modified multi-walled carbon nanotubes on the curing behavior and thermal stability of boron phenolic resin[J]. Polym Degrad stabil, 2009, 94(11):1972-1978.
    Chen C M, Zhang Q, Huang J Q, et al. Chemically derived graphene-metal oxide hybrids as electrodes for electrochemical energy storage:pre-graphenization or post-graphenization[J]. J Mater Chem, 2012, 22(28):13947-13955.
    Yang X M, Li L, Shang S M, et al. Synthesis and characterization of layer-aligned poly(vinyl alcohol)/graphene nanocomposites[J]. Polymer, 2010, 51(15):3431-3435.
    Cao A N, Liu Z, Chu S S, et al. A facile one-step method to produce graphene-CdS quantum dot nanocomposites as promising optoelectronic materials[J]. Adv Mater, 2010, 22(1):103-108.
    Schniepp H C, Li J L , McAllister M J, et al. Functionalized single graphene sheets derived from splitting graphite oxide[J]. J Phys Chem B, 2006, 110(17):8535-8539.
    Hummers W, Ofleman R. Preparation of graphite oxide[J]. J Am Chem Soc, 1958, 80(6):1339.
    Trick K A, Saliba T E. Mechanisms of the pyrolysis of phenolic resin in a carbon/phenolic composite[J]. Carbon, 1995, 33(11):1509-1515.
    Chen C M, Zhang Q, Yang M G, et al. Structural evolution during annealing of thermally reduced graphene nanosheets for application in supercapacitors[J]. Carbon, 2012, 50(10):3572-3584.
    Rodriguez A M, Jimenez P S V. Some new aspects of graphite oxidation at 0℃in a liquid medium. A mechanism proposal for oxidation to graphite oxide[J]. Carbon, 1986, 24(2):163-167.
    Stankovich S, Dikin D A, Piner R D, et al. Synthesis of grapheme-based nanosheets via chemical reduction of exfoliated graphite oxide[J]. Carbon, 2007, 45(7):1558-1565.
    Hu H T, Wang X B, Wang J C, et al. Preparation and properties of graphene nanosheets-polystyrene nanocomposites via in situ emulsion polymerization[J]. Chem phys lett, 2010, 484(4-6):247-253.
    Jang J Y, Jeong H M. Compatibilizing effect of graphite oxide in graphene/PMMA nanocomposites[J]. Macromol Res, 2009, 17(8):626-629.
    杨永岗,陈成猛,温月芳,等.氧化石墨烯及其与聚合物的复合[J]. 新型炭材料, 2008, 23(3):193-200.(YANG Yong-gang, CHEN Cheng-meng, WEN Yue-fang, et al. Oxidized graphene and graphene polymer composites[J]. New Carbon Materials, 2008, 23(3):193-200.)
    Du J H, Cheng H M. The fabrication, properties and uses of graphene/polymer composites[J]. Macromol Chem Phys, 2012, 213(10-11):1060-1077.
    Roczniak K, Biernacka T, Skarzynski M. Some properties and chemical structure of phenolic resin and their derivatives[J]. J Appl Polym Sci, 1983, 28(2):531-542.
    陈鸯飞,陈智琴,刘洪波.酚醛树脂中亚甲基对热降解的影响[J]. 高分子学报, 2008, 399-404.(CHEN Yang-fei, CHEN Zhi-qin, LIU Hong-bo. Effects of methylene substituents on the thermal degradation of phenolic resin[J]. Acta Polymerica Sinica, 2008,(5):399-404.).
    Manfredi L B, Osa O, Fernandez N, et al. Structure-properties relationship for resols with different formaldehyde/phenol molar ratio[J]. Polymer, 1999, 40(13):3867-3875.
    Paju J, Pehk T, Christjanson P. Structure of phenol-formaldehyde polycondensates[J]. Polym Sci, 2009, 58(1):45-52.
    Christjanson P, Pehk T, Paju Jane. Structure and curing mechanism of resol phenol-formaldehyde prepolymer resins[J]. Chemistry, 2010, 59(3):225-232.
    Gao Y, Wang Y, Shi J. Functionalized multi-walled carbon nanotubes improve nonisothermal crystallization of poly(ethylene terephthalate)[J]. Polym Test, 2008, 27(2):179-188.
    Wang C, Huang C L, Chen Y C, et al. Carbon nanocapsules-reinforced syndiotactic polystyrene nanocomposites:Crystallization and morphological features[J]. Polym, 2008, 49(25):5564-5574.
    Ouchi K. Infra-red study of structural changes during the pyrolysis of a phenol-formaldehyde resin[J]. Carbon, 1966, 4(1):59-66.
    Cohen Y, Aizenshtat Z. Investigation of pyrolytically produced condensates of phenol-formaldehyde resins, in relation to their structure and decomposition mechanism[J]. J Anal Appl Pyrol, 1992, 22(3):153-178.
    Costa L, Montelera R d, Camino G, et al. Structure-charring relationship in phenol-formaldehyde type resins[J]. Polym Degrad Stabil, 1997, 56(1):23-35.
  • 加载中
计量
  • 文章访问数:  980
  • HTML全文浏览量:  251
  • PDF下载量:  1072
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-02-15
  • 录用日期:  2015-11-10
  • 修回日期:  2015-10-08
  • 刊出日期:  2015-10-28

目录

    /

    返回文章
    返回