留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微膨石墨锂离子电池负极材料的制备及电化学性能

郭德超 曾燮榕 邓飞 邹继兆 盛洪超

郭德超, 曾燮榕, 邓飞, 邹继兆, 盛洪超. 微膨石墨锂离子电池负极材料的制备及电化学性能. 新型炭材料, 2015, 30(5): 419-424.
引用本文: 郭德超, 曾燮榕, 邓飞, 邹继兆, 盛洪超. 微膨石墨锂离子电池负极材料的制备及电化学性能. 新型炭材料, 2015, 30(5): 419-424.
GUO De-chao, ZENG Xie-rong, DENG Fei, ZOU Ji-zhao, SHENG Hong-chao. Preparation and electrochemical performance of expanded graphites as anode materials for a lithium-ion battery. New Carbon Mater., 2015, 30(5): 419-424.
Citation: GUO De-chao, ZENG Xie-rong, DENG Fei, ZOU Ji-zhao, SHENG Hong-chao. Preparation and electrochemical performance of expanded graphites as anode materials for a lithium-ion battery. New Carbon Mater., 2015, 30(5): 419-424.

微膨石墨锂离子电池负极材料的制备及电化学性能

基金项目: 国家自然科学基金(51272161,51202150);深圳市战略新兴产业发展专项(JCYJ20130326113728218);深圳市政府"人才驿站-双百计划" (Shenfu[2008]182);深圳市科技计划 (CXB201005240010A).
详细信息
    作者简介:

    郭德超,硕士.E-mail:dechao@163.com

    通讯作者:

    曾燮榕,教授.E-mail:zengxier@szu.edu.cn

  • 中图分类号: TB332

Preparation and electrochemical performance of expanded graphites as anode materials for a lithium-ion battery

Funds: National Natural Scientific Foundation of China(51272161,51202150);Science and Technology Project of Shenz-hen(JCYJ20130326113728218);Two Hundred Plan for Talent Station of Shenzhen(Shenfu [2008]182);Sci-ence and Technology R&D Program of Shenzhen(CXB201005240010A).
  • 摘要: 以天然鳞片石墨为原料,利用电泳插层法制备出具有适当膨胀体积的微膨石墨,石墨的结构缺陷增多,具有较大的比表面积和增大的石墨层间距。微膨石墨的可逆容量可以达到521 mAh/g;在0.2 C倍率循环充放电30次容量最佳可保持在99%以上,在1.0 C循环50次其容量可稳定在188 mAh/g,且表现出良好的倍率性能。微膨石墨电化学性能的改善得益于其具有适当的比表面积及内部结构的改变。交流阻抗测试显示微膨石墨的SEI膜阻抗和电荷传递阻抗小于鳞片石墨,具有良好的电化学活性。
  • Armand M, Tarascon J M. Buliding better batteries[J]. Nature, 2008, 451(7179):652-657.
    Zaghib K, Song X, Guerfi A, et al. Effect of particle morphology on lithium intercalation rates in natural graphite[J]. J Power Sources, 2003, 124(2):505-512.
    Fukuda K, Kikuya K, Isono K, et al, Foliated natural graphite as the anode material for rechargeable lithium-ion cells[J]. J Power Sources, 1997, 69(1-2):165-168.
    Herstedt M, Fransson L, Edström K. Rate capability of natural Swedish graphite as anode material in Li-ion batteries[J]. J Power Sources, 2003, 124(1):191-196.
    Sawai K, Ohzuku T. Factory affecting rate capability of graphite electrodes for lithium-ion batteries[J]. J Electrochemical Soc, 2003, 150(6):674-678.
    刘宇,王保峰,解晶莹,等.二次锂离子电池中SEI膜的电化学性能表征[J]. 无机材料学报, 2003, 18(2):307-312.(LIU Yu, WANG Bao-feng, XIE Jing-ying, et al. Electrochemical characteristic of SEI in secondary lithium batteries[J]. Journal of Inorganic Materials, 2003, 18(2):307-312.)
    Liu S H, Ying Z, Wang Z M, et al. Improving the electrochemical properties of natural graphite spheres by coating with a pyrolytic carbon shell[J]. New Carbon Materials, 2008, 23(1):30-36.
    Jang S M, Miyawaki Jin, Masaharu Tsuji, et al. Preparation of a carbon nanofiber/natural graphite composite and an evaluation of its electrochemical properties as an anode material for a Li-ion battery[J]. New Carbon Materials, 2010, 25(2):89-95.
    曾燮榕,王明福,谢盛辉,等.可膨胀石墨的制备方法:中国,C01B31/04, 200410027920[P]. 2005-03-16.
    田雷雷,庄全超,李佳,等.锂离子在石墨烯材料中的嵌入脱出机制[J]. 科学通报, 2011, 56(18):1431-1439.(TIAN Lei-lei, ZHUANG Quan-chao, LI Jia, et al. Mechanism of intercalation and deintercalation of lithium ion in graphene nanosheets[J]. Chinese Sci Bull, 2011, 56(18):1431-1439.)
    Lu M, Cheng H, Yang Y. A comparison of solid electrolyte interphase(SEI) on the artificial graphite anode of the aged and cycled commercial lithium ion cells[J]. Electrochimica Acta, 2008, 53(9):3539-3546.
    Eom J Y, Park J W, Kwon H S. Effects of ball-milling on lithium insertion into multi-walled carbon nanotubes synthesized by thermal chemical vapour deposition[J]. Journal of Power Sources, 2006, 157(1):507-514.
    Wang G X, Shen X P, Yao J, et al. Graphene nanosheets for enhanced lithium storage in lithium ion batteries[J]. Carbon, 2009, 47:2049-2053.
    A Abouimrane, Compton O C, Amine K, et al. Non-annealed graphene paper as a binder-free anode for lithium-ion batteries[J]. J Phys Chem, 2010, 114(29):12800-12804.
    Sato K , Noguchi M , Demachi A , et al. A mechanism of lithium storage in disordered carbons[J]. Science, 1994, 264(5158):556-558.
    Tokumitsu K, Fujimoto H, Mabuchi A, et al. High capacity carbon anode for Li-ion battery:A theoretical explanation[J]. Carbon, 1999, 37(10):1599-1605.
    Peled E, Menachem C, Two D B, et al. Improved graphite anode for lithium-ion batteries[J]. J Electrochem Soc, 1996, 143(10):L4.
    Zheng T, Liu Y H, Fuller EW, et al. Lithium insertion in high-capacity carbonaceous materials[J]. Journal of The Electrochemical Society, 1995, 142(8):2581-2590.
    Zou L, Kang F Y, Zheng Y P, et al. Modified natural flake graphite with high cycle performance as anode material in lithium ion batteries[J]. Electrochemical Acta, 2009, 54:3930-3934.
    杨绍斌,费晓飞,蒋娜.增大层间距对天然石墨可逆储锂性能的影响研究[J]. 化学学报, 2009, 67(17):1995-2000.(YANG Shao-bin, FEI Xiao-fei, JIANG Na. Influences of Increasing Interlayer Space on the Properties of Lithium Storage of Natural Graphite[J]. Acta Chimica Sinica, 2009, 67(17):1995-2000.)
  • 加载中
计量
  • 文章访问数:  834
  • HTML全文浏览量:  200
  • PDF下载量:  634
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-26
  • 录用日期:  2015-11-10
  • 修回日期:  2015-09-10
  • 刊出日期:  2015-10-28

目录

    /

    返回文章
    返回