留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳质材料的气体吸附性能及其在空气净化中的应用

林舒媛 张儒静 姜欣 杨婷婷 劳俊超 朱宏伟

林舒媛, 张儒静, 姜欣, 杨婷婷, 劳俊超, 朱宏伟. 碳质材料的气体吸附性能及其在空气净化中的应用. 新型炭材料, 2015, 30(6): 502-510.
引用本文: 林舒媛, 张儒静, 姜欣, 杨婷婷, 劳俊超, 朱宏伟. 碳质材料的气体吸附性能及其在空气净化中的应用. 新型炭材料, 2015, 30(6): 502-510.
LIN Shu-yuan, ZHANG Ru-jing, JIANG Xin, YANG Ting-ting, LAO Jun-chao, ZHU Hong-wei. Gas adsorption properties of carbon materials and their applications in air purification. New Carbon Mater., 2015, 30(6): 502-510.
Citation: LIN Shu-yuan, ZHANG Ru-jing, JIANG Xin, YANG Ting-ting, LAO Jun-chao, ZHU Hong-wei. Gas adsorption properties of carbon materials and their applications in air purification. New Carbon Mater., 2015, 30(6): 502-510.

碳质材料的气体吸附性能及其在空气净化中的应用

详细信息
    通讯作者:

    朱宏伟,教授.E-mail:hongweizhu@tsinghua.edu.cn

  • 中图分类号: TQ127.1

Gas adsorption properties of carbon materials and their applications in air purification

  • 摘要: 面对日益突出的环境问题,具有稳定理化性质、高比表面积、多活性吸附位点的碳质材料可广泛应用于废气净化、水处理、溶剂回收等领域。本文重点综述了5种典型碳质材料:活性炭、活性炭纤维、碳纳米纤维、碳纳米管、石墨烯的制备方法、气体吸附性能及其在空气净化方面的应用。传统碳质材料、其改性产物及其复合材料具有优异的污染气体吸附性能,而纳米碳质材料兼具理想的吸附效果与特殊电学性能,可用于制备气体传感器,监测污染气体含量。最后展望了新型炭材料在空气净化中的研发和应用前景。
  • Kern H, Taferner M, Raupenstrauch H. Effectiveness of improvised gas absorption techniques for emergency responders at releases of toxic gases[J]. Process Safety Progress, 2015, 34(2): 154-156.
    Hay S O, Obee T, Luo Z, et al. The viability of photocatalysis for air purification[J]. Molecules, 2015, 20(1): 1319-1356.
    Zhong L, Haghighat F. Photocatalytic air cleaners and materials technologies-Abilities and limitations[J]. Building and Environment, 2015, 91: 191-203.
    Brandenburg R, Kova?evic V V, Schmidt M, et al. Plasma-based pollutant degradation in gas streams: status, examples and outlook[J]. Contributions to Plasma Physics, 2014, 54(2): 202-214.
    Wu Y, Chen Y, Yu K, et al. Deposition removal of monodisperse and polydisperse submicron particles by a negative air lonizer[J]. Aerosol and Air Quality Research, 2015, 15: 994-1007.
    Sircar S, Golden T C, Rao M B. Activated carbon for gas separation and storage[J]. Carbon, 1996, 34(1): 1-12.
    Zhang L, Aboagye A, Kelkar A, et al. A review: carbon nanofibers from electrospun polyacrylonitrile and their applications[J]. Journal of Materials Science, 2014, 49(2): 463-480.
    De Jong K P, Geus J W. Carbon nanofibers: catalytic synthesis and applications[J]. Catalysis Reviews, 2000, 42(4): 481-510.
    Jang J, Bae J, Choi M, et al. Fabrication and characterization of polyaniline coated carbon nanofiber for supercapacitor[J]. Carbon, 2005, 43(13): 2730-2736.
    Mamo M A, Mishra A K. Carbon nanotubes in the removal of heavy metal ions from aqueous solution[J]. Application of Nanotechnology in Water Research, 2014: 153-181.
    Bonaccorso F, Colombo L, Yu G, et al. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage[J]. Science, 2015, 347(6217): 1246501.
    Zhang R, Cao Y, Li P, et al. Three-dimensional porous graphene sponges assembled with the combination of surfactant and freeze-drying[J]. Nano Research, 2014, 7(10): 1477-1487.
    Sun P, Wang K, Wei J, et al. Effective recovery of acids from iron-based electrolytes using graphene oxide membrane filters[J]. Journal of Materials Chemistry A, 2014, 2(21): 7734-7737.
    Yunus I S, Harwin, Kurniawan A, et al. Nanotechnologies in water and air pollution treatment[J]. Environmental Technology Reviews, 2012, 1(1): 136-148.
    Llobet E. Gas sensors using carbon nanomaterials: A review[J]. Sensors and Actuators B: Chemical, 2013, 179: 32-45.
    Hameed B H, Rahman A A. Removal of phenol from aqueous solutions by adsorption onto activated carbon prepared from biomass material[J]. Journal of Hazardous Materials, 2008, 160(2): 576-581.
    Martinez M L, Torres M M, Guzman C A, et al. Preparation and characteristics of activated carbon from olive stones and walnut shells[J]. Industrial Crops and Products, 2006, 23(1): 23-28.
    Ahmadpour A, Do D D. The preparation of active carbons from coal by chemical and physical activation[J]. Carbon, 1996, 34(4): 471-479.
    Kawano T, Kubota M, Onyango M S, et al. Preparation of activated carbon from petroleum coke by KOH chemical activation for adsorption heat pump[J]. Applied Thermal Engineering, 2008, 28(8): 865-871.
    Ruthven D M. Principles of adsorption and adsorption processes[M]. John Wiley & Sons, 1984.
    Omri A, Benzina M, Ammar N. Preparation, modification and industrial application of activated carbon from almond shell[J]. Journal of Industrial and Engineering Chemistry, 2013, 19(6): 2092-2099.
    Yin C Y, Aroua M K, Daud W M A W. Review of modifications of activated carbon for enhancing contaminant uptakes from aqueous solutions[J]. Separation and Purification Technology, 2007, 52(3): 403-415.
    Shi H. Activated carbons and double layer capacitance[J]. Electrochimica Acta, 1996, 41(10): 1633-1639.
    Bansode R R, Losso J N, Marshall W E, et al. Adsorption of volatile organic compounds by pecan shell-and almond shell-based granular activated carbons[J]. Bioresource Technology, 2003, 90(2): 175-184.
    Hou H, Miyafuji H, Saka S. Photocatalytic activities and mechanism of the supercritically treated TiO2-activated carbon composites on decomposition of acetaldehyde[J]. Journal of Materials Science, 2006, 41(24): 8295-8300.
    Sumathi S, Bhatia S, Lee K T, et al. Selection of best impregnated palm shell activated carbon (PSAC) for simultaneous removal of SO2 and NOx[J]. Journal of Hazardous Materials, 2010, 176(1): 1093-1096.
    Tsai J, Jeng F, Chiang H. Removal of H2S from exhaust gas by use of alkaline activated carbon[J]. Adsorption, 2001, 7(4): 357-366.
    Suzuki M. Activated carbon fiber: fundamentals and applications[J]. Carbon, 1994, 32(4): 577-586.
    Feng W, Kwon S, Borguet E, et al. Adsorption of hydrogen sulfide onto activated carbon fibers: effect of pore structure and surface chemistry[J]. Environmental Science & Technology, 2005, 39(24): 9744-9749.
    Cal M P, Larson S M, Rood M J. Experimental and modeled results describing the adsorption of acetone and benzene onto activated carbon fibers[J]. Environmental Progress, 1994, 13(1): 26-30.
    Guo T, Bai Z, Wu C, et al. Influence of relative humidity on the photocatalytic oxidation (PCO) of toluene by TiO2 loaded on activated carbon fibers: PCO rate and intermediates accumulation[J]. Applied Catalysis B: Environmental, 2008, 79(2): 171-178.
    Mo D, Ye D. Surface study of composite photocatalyst based on plasma modified activated carbon fibers with TiO2[J]. Surface and Coatings Technology, 2009, 203(9): 1154-1160.
    Lee J S, Kwon O S, Park S J, et al. Fabrication of ultrafine metal-oxide-decorated carbon nanofibers for DMMP sensor application[J]. ACS Nano, 2011, 5(10): 7992-8001.
    Yi F, Lin X, Chen S, et al. Adsorption of VOC on modified activated carbon fiber[J]. Journal of Porous Materials, 2009, 16(5): 521-526.
    Wang J Y, Zhao F Y, Hu Y Q, et al. Modification of activated carbon fiber by loading metals and their performance on SO2 removal[J]. Chinese Journal of Chemical Engineering, 2006, 14(4): 478-485.
    Edison T A. Manufacture of carbon filaments: U.S. Patent 525,007[P]. 1894-8-28.
    Jang J, Bae J, Choi M, et al. Fabrication and characterization of polyaniline coated carbon nanofiber for supercapacitor[J]. Carbon, 2005, 43(13): 2730-2736.
    Song X, Wang Z, Li Z, et al. Ultrafine porous carbon fibers for SO2 adsorption via electrospinning of polyacrylonitrile solution[J]. Journal of Colloid and Interface Science, 2008, 327(2): 388-392.
    Oh G, Ju Y, Kim M, et al. Adsorption of toluene on carbon nanofibers prepared by electrospinning[J]. Science of the Total Environment, 2008, 393(2): 341-347.
    Bai Y, Huang Z, Kang F. Surface oxidation of activated electrospun carbon nanofibers and their adsorption performance for benzene, butanone and ethanol[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 443: 66-71.
    Guo Z, Huang Z, Wang M, et al. Graphene/carbon composite nanofibers for NO oxidation at room temperature[J]. Catalysis Science & Technology, 2015, 5(2): 827-829.
    Wang M, Huang Z, Shen K, et al. Catalytically oxidation of NO into NO2 at room temperature by graphitized porous nanofibers[J]. Catalysis Today, 2013, 201: 109-114.
    Lee K J, Shiratori N, Lee G H, et al. Activated carbon nanofiber produced from electrospun polyacrylonitrile nanofiber as a highly efficient formaldehyde adsorbent[J]. Carbon, 2010, 48(15): 4248-4255.
    Kim S, Lim S K. Preparation of TiO2-embedded carbon nanofibers and their photocatalytic activity in the oxidation of gaseous acetaldehyde[J]. Applied Catalysis B: Environmental, 2008, 84(1): 16-20.
    Im J S, Kang S C, Lee S, et al. Improved gas sensing of electrospun carbon fibers based on pore structure, conductivity and surface modification[J]. Carbon, 2010, 48(9): 2573-2581.
    Lee J S, Kwon O S, Park S J, et al. Fabrication of ultrafine metal-oxide-decorated carbon nanofibers for DMMP sensor application[J]. ACS Nano, 2011, 5(10): 7992-8001.
    Iijima S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354(6348): 56-58.
    Ren X, Chen C, Nagatsu M, et al. Carbon nanotubes as adsorbents in environmental pollution management: a review[J]. Chemical Engineering Journal, 2011, 170(2): 395-410.
    Chen C, Hu J, Shao D, et al. Adsorption behavior of multiwall carbon nanotube/iron oxide magnetic composites for Ni (II) and Sr (II)[J]. Journal of Hazardous Materials, 2009, 164(2): 923-928.
    Long R Q, Yang R T. Carbon nanotubes as a superior sorbent for nitrogen oxides[J]. Industrial & Engineering Chemistry Research, 2001, 40(20): 4288-4291.
    Cinke M, Li J, Bauschlicher C W, et al. CO2 adsorption in single-walled carbon nanotubes[J]. Chemical Physics Letters, 2003, 376(5): 761-766.
    Huang L, Zhang L, Shao Q, et al. Simulations of binary mixture adsorption of carbon dioxide and methane in carbon nanotubes: temperature, pressure, and pore size effects[J]. The Journal of Physical Chemistry C, 2007, 111(32): 11912-11920.
    Omidfar N, Mohamadalizadeh A, Mousavi S H. Carbon dioxide adsorption by modified carbon nanotubes[J]. Asia-Pacific Journal of Chemical Engineering, 2015: 1925.
    Javid A H, Gorannevis M, Moattar F, et al. Modeling of benzene adsorption in the gas phase on single-walled carbon nanotubes for reducing air pollution[J]. International Journal of Nanoscience and Nanotechnology, 2013, 9(4): 227-234.
    Chen Z, Zhang L, Tang Y, et al. Adsorption of nicotine and tar from the mainstream smoke of cigarettes by oxidized carbon nanotubes[J]. Applied Surface Science, 2006, 252(8): 2933-2937.
    Girão E C, Fagan S B, Zanella I, et al. Nicotine adsorption on single wall carbon nanotubes[J]. Journal of Hazardous Materials, 2010, 184(1): 678-683.
    Kong J, Franklin N R, Zhou C, et al. Nanotube molecular wires as chemical sensors[J]. Science, 2000, 287(5453): 622-625.
    Collins P G, Bradley K, Ishigami M, et al. Extreme oxygen sensitivity of electronic properties of carbon nanotubes[J]. Science, 2000, 287(5459): 1801-1804.
    Kauffman D R, Star A. Carbon nanotube gas and vapor sensors[J]. Angewandte Chemie International Edition, 2008, 47(35): 6550-6570.
    Liu S F, Moh L C, Swager T M. Single-walled carbon nanotube-metalloporphyrin chemiresistive gas sensor arrays for volatile organic compounds[J]. Chemistry of Materials, 2015, 27(10): 3560-3563.
    Qi H, Liu J, Pionteck J, et al. Carbon nanotube-cellulose composite aerogels for vapour sensing[J]. Sensors and Actuators B: Chemical, 2015, 213: 20-26.
    Shi D, Wei L, Wang J, et al. Solid organic acid tetrafluorohydroquinone functionalized single-walled carbon nanotube chemiresistive sensors for highly sensitive and selective formaldehyde detection[J]. Sensors and Actuators B: Chemical, 2013, 177: 370-375.
    Xie H, Sheng C, Chen X, et al. Multi-wall carbon nanotube gas sensors modified with amino-group to detect low concentration of formaldehyde[J]. Sensors and Actuators B: Chemical, 2012, 168: 34-38.
    Li J, Lu Y, Ye Q, et al. Carbon nanotube sensors for gas and organic vapor detection[J]. Nano Letters, 2003, 3(7): 929-933.
    Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
    Allen M J, Tung V C, Kaner R B. Honeycomb carbon: a review of graphene[J]. Chemical Reviews, 2009, 110(1): 132-145.
    Kemp K C, Seema H, Saleh M, et al. Environmental applications using graphene composites: water remediation and gas adsorption[J]. Nanoscale, 2013, 5(8): 3149-3171.
    Kong L, Enders A, Rahman T S, et al. Molecular adsorption on graphene[J]. Journal of Physics: Condensed Matter, 2014, 26(44): 443001.
    Yu J, Yu L, Yang H, et al. Graphene nanosheets as novel adsorbents in adsorption, preconcentration and removal of gases, organic compounds and metal ions[J]. Science of the Total Environment, 2015, 502: 70-79.
    Hong N, Song L, Wang B, et al. Fabrication of graphene supported carbon coating cobalt and carbon nanoshells for adsorption of toxic gases and smoke[J]. Journal of Applied Polymer Science, 2014, 131(13): 40457.
    Liang J, Cai Z, Li L, et al. Scalable and facile preparation of graphene aerogel for air purification[J]. RSC Advances, 2014, 4(10): 4843-4847.
    Schedin F, Geim A K, Morozov S V, et al. Detection of individual gas molecules adsorbed on graphene[J]. Nature Materials, 2007, 6(9): 652-655.
    Yuan W, Shi G. Graphene-based gas sensors[J]. Journal of Materials Chemistry A, 2013, 1(35): 10078-10091.
    Basu S, Bhattacharyya P. Recent developments on graphene and graphene oxide based solid state gas sensors[J]. Sensors and Actuators B: Chemical, 2012, 173: 1-21.
    Toda K, Furue R, Hayami S. Recent progress in applications of graphene oxide for gas sensing: A review[J]. Analytica Chimica Acta, 2015, 878: 43-53.
  • 加载中
计量
  • 文章访问数:  737
  • HTML全文浏览量:  144
  • PDF下载量:  2062
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-28
  • 录用日期:  2016-01-05
  • 修回日期:  2015-12-01
  • 刊出日期:  2015-12-28

目录

    /

    返回文章
    返回