留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯复合材料在金属离子传感器中的应用进展

杨志宇 代宁宁 吕瑞涛 黄正宏 康飞宇

杨志宇, 代宁宁, 吕瑞涛, 黄正宏, 康飞宇. 石墨烯复合材料在金属离子传感器中的应用进展. 新型炭材料, 2015, 30(6): 511-518.
引用本文: 杨志宇, 代宁宁, 吕瑞涛, 黄正宏, 康飞宇. 石墨烯复合材料在金属离子传感器中的应用进展. 新型炭材料, 2015, 30(6): 511-518.
YANG Zhi-yu, DAI Ning-ning, LU Rui-tao, HUANG Zheng-hong, KANG Fei-yu. A review of graphene composite-based sensors for detection of heavy metals. New Carbon Mater., 2015, 30(6): 511-518.
Citation: YANG Zhi-yu, DAI Ning-ning, LU Rui-tao, HUANG Zheng-hong, KANG Fei-yu. A review of graphene composite-based sensors for detection of heavy metals. New Carbon Mater., 2015, 30(6): 511-518.

石墨烯复合材料在金属离子传感器中的应用进展

详细信息
    通讯作者:

    黄正宏,副教授.E-mail:zhhuang@mail.tsinghua.edu.cn

  • 中图分类号: QT127.1+1

A review of graphene composite-based sensors for detection of heavy metals

  • 摘要: 石墨烯因其独特的物理和电学性能而得到广泛关注。石墨烯基纳米材料也因其独特的性能,如高的比表面积,高的电子流动性和超低的电子噪音而被用于高性能的传感器。石墨烯/氧化石墨烯基纳米材料用于快速灵敏地检测对环境和人类健康有潜在威胁的重金属离子具有广阔的前景。本文综述了采用石墨烯和氧化石墨烯基纳米材料用于电化学检测重金属离子的最新进展。
  • Gao C, Yu X Y, Xiong S Q, et al. Electrochemical detection of arsenic(III) completely free from noble metal: Fe3O4 microspheres-room temperature ionic liquid composite showing better performance than gold[J]. Analytical Chemistry, 2013, 85: 2673-2680.
    Kunze G, Tag K, Riedel K, et al. Amperometric detection of Cu2+ by yeast biosensors using flow injection analysis (FIA) [J]. Sensors and Actuators B (Chemical), 2007, 122: 403-409.
    Aragay G, Merkoçi A. Nanomaterials application in electrochemical detection of heavy metals[J]. Electrochimica Acta, 2012, 84: 49-61.
    Ugo P, Zampieri S, Moretto L M, et al. Determination of mercury in process and lagoon waters by inductively coupled plasma-mass spectrometric analysis after electrochemical preconcentration: comparison with anodic stripping at gold and polymer coated electrodes[J]. Analytica Chimica Acta, 2001, 434: 291-300.
    Kim H N, Ren W X, Kim J S, et al. Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions[J]. Chemical Society Reviews, 2012, 41: 3210-3244.
    Azarova Y A, Pestov A V, Ustinov A Y, et al. Application of chitosan and its N-heterocyclic derivatives for preconcentration of noble metal ions and their determination using atomic absorption spectrometry[J]. Carbohydrate polymers, 2015, 134: 680-686.
    Wong E L S, Chow E, Justin Gooding J. The electrochemical detection of cadmium using surface-immobilized DNA[J]. Electrochemistry Communications, 2007, 9: 845-849.
    王 斌, 常雁红, 智林杰. 高产量制备石墨烯及其优异的重金属离子检测性能[J]. 新型炭材料, 2011, 26: 31-35. (WANG Bin, CHANG Yan-hong, ZHI Lin-jine. High yield production of graphene and its improved property in detecting heavy metal ions[J]. New Carbon Materials, 2011, 26: 31-35.)
    Shao Y, Wang J, Wu H, et al. Graphene based electrochemical sensors and biosensors: A review[J]. Electroanalysis, 2010, 22: 1027-1036.
    Wu S, He Q, Tan C, et al. Graphene-based electrochemical sensors[J]. Small, 2013, 9: 1160-1172.
    Zhou N, Chen H, Li J, et al. Highly sensitive and selective voltammetric detection of mercury(II) using an ITO electrode modified with 5-methyl-2-thiouracil, graphene oxide and gold nanoparticles[J]. Microchimica Acta, 2013, 180: 493-499.
    Tang F J, Zhang F, Jin Q H, et al. Determination of trace cadmium and lead in water based on graphene-modified platinum electrode sensor[J]. Chinese Journal of Analytical Chemistry, 2013, 41: 278-282.
    Zhang W, Wei J, Zhu H, et al. Self-assembled multilayer of alkyl graphene oxide for highly selective detection of copper(II) based on anodic stripping voltammetry[J]. Journal of Materials Chemistry, 2012, 22: 22631-22636.
    Ceken B, Kandaz M, Koca A. Electrochemical metal-ion sensors based on a novel manganese phthalocyanine complex[J]. Synthetic Metals, 2012, 162: 1524-1530.
    Chow E, Gooding J J. Peptide modified electrodes as electrochemical metal ion sensors[J]. Electroanalysis, 2006, 18: 1437-1448.
    Manivannan A, Seehra M S, Tryk D A, et al. Electrochemical detection of ionic mercury at boron-doped diamond electrodes[J]. Analytical Letters, 2002, 35: 355-368.
    Abollino O, Giacomino A, Malandrino M, et al. Determination of mercury by anodic stripping voltammetry with a gold nanoparticle-modified glassy carbon electrode[J]. Electroanalysis, 2008, 20: 75-83.
    Chang J, Zhou G, Christensen E R, et al. Graphene-based sensors for detection of heavy metals in water: A review[J]. Analytical and Bioanalytical Chemistry, 2014, 406: 3957-3975.
    Hong S, Myung S. Nanotube electronics - A flexible approach to mobility[J]. Nature Nanotechnology, 2007, 2: 207-208.
    Sridhar V, Kim H J, Jung J H, et al. Defect-engineered three-dimensional graphene-nanotube-palladium nanostructures with ultrahigh capacitance[J]. ACS Nano, 2012, 6: 10562-10570.
    Chen S, Wu Q, Mishra C, et al. Thermal conductivity of isotopically modified graphene[J]. Nature Materials, 2012, 11: 203-207.
    Bolotin K I, Sikes K J, Jiang Z, et al. Ultrahigh electron mobility in suspended graphene[J]. Solid State Communications, 2008, 146: 351-355.
    Hwang J, Kim D S, Ahn D, et al. Transport properties of a DNA-conjugated single-wall carbon nanotube field-effect transistor[J]. Japanese Journal of Applied Physics, 2008, 48: 1115-1117.
    Chen J, Li C, Shi G. Graphene materials for electrochemical capacitors[J]. Journal of Physical Chemistry Letters, 2013, 4: 1244-1253.
    Joshi R K, Gomez H, Alvi F, et al. Graphene films and ribbons for sensing of O2, and 100 ppm of CO and NO2 in practical conditions[J]. Journal of Physical Chemistry C, 2010, 114: 6610-6613.
    Zhang J T, Jin Z Y, Li W C, et al. Graphene modified carbon nanosheets for electrochemical detection of Pb(II) in water[J]. Journal of Materials Chemistry A, 2013, 1: 13139-13145.
    Zhang W, Wei J, Zhu H, et al. Self-assembled multilayer of alkyl graphene oxide for highly selective detection of copper(II) based on anodic stripping voltammetry[J]. Journal of Materials Chemistry, 2012, 22: 22631-22636.
    Liu L, Wang C, Wang G. Novel cysteic acid/reduced graphene oxide composite film modified electrode for the selective detection of trace silver ions in natural waters[J]. Analytical Methods, 2013, 5: 5812-5822.
    Zhao Z Q, Chen X, Yang Q, et al. Selective adsorption toward toxic metal ions results in selective response: electrochemical studies on a polypyrrole/reduced graphene oxide nanocomposite[J]. Chemical Communications, 2012, 48: 2180-2182.
    Miao P, Liu L, Li Y, et al. A novel electrochemical method to detect mercury (II) ions[J]. Electrochemistry Communications, 2009, 11: 1904-1907.
    Wang Z, Zhang D Q, Zhu D B. A sensitive and selective "turn on" fluorescent chemosensor for Hg(II) ion based on a new pyrene-thymine dyad[J]. Analytica Chimica Acta, 2005, 549: 10-13.
    Zhao Z Q, Chen X, Yang Q, et al. Beyond the selective adsorption of polypyrrole-reduced graphene oxide nanocomposite toward Hg2+: Ultra-sensitive and -selective sensing Pb2+ by stripping voltammetry[J]. Electrochemistry Communications, 2012, 23: 21-24.
    Jia X, Li J, Wang E. High-sensitivity determination of lead(II) and cadmium(II) based on the CNTs-PSS/Bi composite film electrode[J]. Electroanalysis, 2010, 22: 1682-1687.
    Wang Z, Liu E, Gu D, et al. Glassy carbon electrode coated with polyaniline-functionalized carbon nanotubes for detection of trace lead in acetate solution[J]. Thin Solid Films, 2011, 519: 5280-5284.
    Promphet N, Rattanarat P, Rangkupan R, et al. An electrochemical sensor based on graphene/polyaniline/polystyrene nanoporous fibers modified electrode for simultaneous determination of lead and cadmium[J]. Sensors and Actuators B-Chemical, 2015, 207: 526-534.
    Seenivasan R, Chang W J, Gunasekaran S. Highly sensitive detection and removal of lead ions in water using cysteine-functionalized graphene oxide/polypyrrole nanocomposite film electrode[J]. ACS Applied Materials & Interfaces, 2015, 7: 15935-15943.
    Li J, Guo S, Zhai Y, et al. High-sensitivity determination of lead and cadmium based on the Nafion-graphene composite film[J]. Analytica Chimica Acta, 2009, 649: 196-201.
    Willemse C M, Tlhomelang K, Jahed N, et al. Metallo-graphene nanocomposite electrocatalytic platform for the determination of toxic metal ions[J]. Sensors, 2011, 11: 3970-3987.
    Liu H, Li S, Sun D, et al. Layered graphene nanostructures functionalized with NH2-rich polyelectrolytes through selfassembly: Construction and their application in trace Cu(II) detection[J]. Journal of Materials Chemistry B, 2014, 2: 2212-2219.
    Gong Jm, Ting Z, Dandan S, et al. Monodispersed Au nanoparticles decorated graphene as an enhanced sensing platform for ultrasensitive stripping voltammetric detection of mercury(II)[J]. Sensors and Actuators: B Chemical, 2010, 150: 491-497.
    Wei Y, Gao C, Meng F L, et al. SnO2/reduced graphene oxide nanocomposite for the simultaneous electrochemical detection of cadmium(II), lead(II), copper(II), and mercury(II): An interesting favorable mutual interference[J]. Journal of Physical Chemistry C, 2012, 116: 1034-1041.
    Gao C, Yu X Y, Xu R X, et al. AlOOH-reduced graphene oxide nanocomposites: One-pot hydrothermal synthesis and their enhanced electrochemical activity for heavy metal ions[J]. ACS Applied Materials & Interfaces, 2012, 4: 4672-4682.
  • 加载中
计量
  • 文章访问数:  997
  • HTML全文浏览量:  199
  • PDF下载量:  1021
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-05
  • 录用日期:  2016-01-05
  • 修回日期:  2015-12-03
  • 刊出日期:  2015-12-28

目录

    /

    返回文章
    返回