留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

活性炭纤维与高级氧化技术在水体修复领域的联合应用

郑经堂 朱超胜 江波

郑经堂, 朱超胜, 江波. 活性炭纤维与高级氧化技术在水体修复领域的联合应用. 新型炭材料, 2015, 30(6): 519-532.
引用本文: 郑经堂, 朱超胜, 江波. 活性炭纤维与高级氧化技术在水体修复领域的联合应用. 新型炭材料, 2015, 30(6): 519-532.
ZHENG Jing-tang, ZHU Chao-sheng, JIANG Bo. Uses of activated carbon fibers and advanced oxidation technologies in the remediation of water. New Carbon Mater., 2015, 30(6): 519-532.
Citation: ZHENG Jing-tang, ZHU Chao-sheng, JIANG Bo. Uses of activated carbon fibers and advanced oxidation technologies in the remediation of water. New Carbon Mater., 2015, 30(6): 519-532.

活性炭纤维与高级氧化技术在水体修复领域的联合应用

基金项目: 国家自然科学基金(21376268);中央高校基本科研业务费专项资金(15CX08005A).
详细信息
    通讯作者:

    郑经堂,教授.E-mail:jtzheng03@163.com

  • 中图分类号: X7301

Uses of activated carbon fibers and advanced oxidation technologies in the remediation of water

Funds: National Natural Science Foundation of China (21376268); Fundamental Research Funds for the Central Universities (15CX08005A).
  • 摘要: 高级氧化技术和活性炭纤维吸附技术都是修复有机物污染水体极具前景的技术,两者联合,发挥协同作用是近些年水处理技术发展的趋势。笔者综述了活性炭纤维联合二氧化钛光催化技术,低温等离子技术,臭氧氧化技术,芬顿技术以及电化学氧化技术水处理体系的研究进展,探索了这些体系的处理对象、处理效果、污染物降解机理,重点介绍活性炭纤维在富集有机污染物分子方面扮演的关键角色。
  • Han F, Kambala V S R, Srinivasan M, et al. Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment: a review[J]. Applied Catalysis A: General, 2009, 359(1): 25-40.
    Linsebigler A L, Lu G, Yates Jr J T. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results[J]. Chemical Reviews, 1995, 95(3): 735-758.
    Mills A, Le Hunte S. An overview of semiconductor photocatalysis[J]. Journal of Photochemistry and Photobiology A: Chemistry, 1997, 108(1): 1-35.
    杨会娜. 纤维二氧化钛掺杂复合及光催化性质研究[D]. 大连理工大学, 2007. (Yang H. Deposit, doping and photocatalytic activity of fibrous TiO2[D]. Dalian University of Technology, 2007.)
    樊彩梅, 梁镇海, 闵延琴, 等. 浅池型TiO2/ACF光催化降解水中苯酚的研究[J]. 燃料化学学报, 2003, 第5期(05): 504-508. (Fan C, Liang Z,-Min Y, et al. Study on photocatalytic oxidation of phenol in water using TiO2 immobilized onto ACF in a shallow pond reactor[J]. Journal of Fuel Chemistry and Technology, 2003, 5(05): 504-508.
    贾国正, 王志良, 张 勇, 等. TiO2/ACF光催化反应器的设计及降解苯酚的研究[J]. 环境工程, 2009, 06期(6): 46-49. (Jia G, Wang Z, Zhang Y, et al. Research on photocatalytic degradation of phenol in waste water using TiO2/ACF and designing photocatalytic reactor[J]. Environmental Engineering, 2009, 06(6): 46-49.)
    冀晓静, 郑经堂. 纳米二氧化钛光催化活性影响因素的研究[J]. 稀有金属快报, 2007, 26 (4): 22-26. (JI Xiao-jing, ZHENG Jing-tang. The research on influence factors of Nano- Titanium dioxide photocatalytic activity[J]. Rare Metals Letters, 2007, 26(4): 22-26.)
    冀晓静, 郑经堂, 石建稳, 等. 钛硅复合氧化物光催化剂的研究进展[J]. 化工进展, 2007, 26 (4): 472-476. (Ji X, Zheng J, Shi J, et al. Progress of photocatalysts of composite titanium-silicon oxide[J]. Chemical Industry and Engineering Progress, 2007, 26 (4): 472-476.)
    冀晓静, 郑经堂, 石建稳, 等. 钛硅复合氧化物晶体结构及光催化性能研究[J]. 人工晶体学报, 2008, 37 (1): 218-223. (Ji X, Zheng J, Shi J, et al. Crystal structure and photocatalytic activities of TiO2-SiO2 composite oxide[J]. Journal of Synthetic Crystals, 2008, 37(1): 218-223.)
    冀晓静, 郑经堂, 石建稳, 等. Fe/Si/TiO2三元复合光催化剂的性能研究[J]. 环境污染与防治, 2007, 29 (11): 801-804. (The performance research of Fe/Si/TiO2 three-element composite photocatalyst[J]. Environmental Pollution & Control, 2007, 29 (11): 801-804.)
    齐 蕾, 郑经堂, 曲降伟, 等. La-N 共掺杂改性TiO2光催化性能研究[J]. 应用化工, 2009, 38 (7): 933-936. (Qi L, Zheng J, Qu L, et al. Study on performance of the La-N co-doped TiO2 modification photocatalyst[J]. Chinese Journal of Applied Chemistry, 2009, 38 (7): 933-936.)
    刘 倩, 郑经堂, 刘萌萌, 等. 可见光响应复合高效光催化剂的制备及应用[J]. 中国石油大学学报: 自然科学版, 2013, 37(2): 158-164. (Liu Q, Zheng J, Liu M, et al. Preparation and application of a high efficient composite photocatalyst of visible light activity[J]. Journal of China University of Petroleum, 2013, 37(2): 158-164.)
    刘 倩, 郑经堂, 江 波, 等. 高效光催化剂的制备及应用研究[J]. 化工新型材料, 2012, 40 (9): 113-115. (Liu Q, Zheng J, Jiang B, et al. Preparation and characterization of efficient photocatalyst under UV light[J]. New Chemical Materials, 2012, 40 (9): 113-115.)
    刘 倩, 郑经堂, 江 波, 等. Fe-Sm 共掺杂改性TiO2高效光催化剂的制备与表征研究[J]. 现代化工, 2012, 32 (12): 69-72. (Liu Q, Zheng J, Jiang B, et al. Preparation and characterization of Fe-Sm co-doped TiO2 photocatalyst under UV light[J]. Modern Chemical Industry, 2012, 32(12): 69-72.)
    杨 哲, 郑经堂, 隋吴彬, 等. 活性炭纤维负载镧氮共掺杂二氧化钛复合催化剂可见光下光催化性能研究[J]. 炭素, 2012, (1): 8-12. (Yang Z, Zheng J, Sui W, et al. Photocatalytic degradation activity of ACF loading La and N co-doped TiO2[J]. Carbon, 2012, (1):8-12.)
    杨 哲, 郑经堂, 隋吴彬, 等. 活性炭纤维负载二氧化钛复合催化剂降解甲基橙性能研究[J]. 炭素技术, 2012, 31. (Yang Z, Zheng J, Sui W, et al. Photocatalytic degradation activity of ACF/TiO2 for methyl orange[J]. Carbon Techniques, 2012, 31.)
    Yang Z, Zheng J, Sui W, et al. Rapid route for synthesis of nano-TiO2 termed graded calcination[J]. Micro & Nano Letters, 2012, 7(3): 212-214.
    Tendero C, Tixier C, Tristant P, et al. Atmospheric pressure plasmas: A review[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2006, 61(1): 2-30.
    Sun B, Sato M, Harano A, et al. Non-uniform pulse discharge-induced radical production in distilled water[J]. Journal of Electrostatics, 1998, 43(2): 115-126.
    Hickling A. Electrochemical Processes in Glow Discharge at the Gas-Solution Interface[M]. Modern Aspects of Electrochemistry No. 6. Springer US, 1971: 329-373.
    Joshi R P, Thagard S M. Streamer-like electrical discharges in water: part II. Environmental applications[J]. Plasma Chemistry and Plasma Processing, 2013, 33(1): 17-49.
    曲险峰. 活性炭纤维对水中酚类有机物的催化臭氧化[D]. 中国石油大学, 2007. (QU Xian-feng. Catalytic ozonation of phenolic compounds in water by activated carbon fiber[D]. China University of Petroleum, 2007.)
    Sugiarto A T, Ito S, Ohshima T, et al. Oxidative decoloration of dyes by pulsed discharge plasma in water[J]. Journal of Electrostatics, 2003, 58: 135-145.
    Lukeš P. Water treatment by pulsed streamer corona discharge[J]. Institute of Plasma Physics AS CR: Prague, Czech Republic, 2001.
    Locke B R, Sato M, Sunka P, et al. Electrohydraulic discharge and nonthermal plasma for water treatment[J]. Industrial & engineering chemistry research, 2006, 45(3): 882-905.
    Hemmert D, Shiraki K, Yokoyama T, et al. Optical diagnostics of shock waves generated by a pulsed streamer discharge in water[C]. Pulsed Power Conference, 2003. Digest of Technical Papers. PPC-2003. 14th IEEE International. IEEE, 2003, 1: 232-235.
    Willberg D M, Lang P S, Höchemer R H, et al. Degradation of 4-chlorophenol, 3, 4-dichloroaniline, and 2, 4, 6-trinitrotoluene in an electrohydraulic discharge reactor[J]. Environmental Science & Technology, 1996, 30(8): 2526-2534.
    刘晓春, 冯长根, 朱祖良, 等. 水中高压脉冲放电的光辐射研究[J]. 北京理工大学学报, 1999, 19 (1): 8-12. (LIU Xiao-hun, FENG Chang-gen, Zhu Z, et al. Light radiation from pulsed discharges in water[J]. Journal of Beijing Institute of Technology, 1999, 19(1): 8-12.)
    Lukes P, Clupek M, Babicky V, et al. Ultraviolet radiation from the pulsed corona discharge in water[J]. Plasma Sources Science & Technology, 2008, 17(2): 10-11.
    Sun B, Sato M, Clements J S. Oxidative processes occurring when pulsed high voltage discharges degrade phenol in aqueous solution[J]. Environmental Science & Technology, 2000, 34(3): 509-513.
    Lukes P, Brisset J L, Locke B R. Biological effects of electrical discharge plasma in water and in gas-liquid environments[J]. Plasma Chemistry and Catalysis in Gases and Liquids, 2012: 309-352.
    李红梅, 郑经堂, 张延宗. 高压脉冲放电等离子体技术处理有机废水进展[J]. 化工进展, 2009, (06): 1047-1050. (LI Hong-mei, ZHENG Jing-tang, ZHANG Yan-zong. Development of high voltage pulse discharged plasma for organic wastewater treatment[J]. Chemical Industry and Engineering Progress, 2009, (06): 1047-1050.)
    Mangun C L, Benak K R, Economy J, et al. Surface chemistry, pore sizes and adsorption properties of activated carbon fibers and precursors treated with ammonia[J]. Carbon, 2001, 39(12): 1809-1820.
    Rodriguez-Reinoso F, Molina-Sabio M, Munecas M A. Effect of microporosity and oxygen surface groups of activated carbon in the adsorption of molecules of different polarity[J]. The Journal of Physical Chemistry, 1992, 96(6): 2707-2713.
    张延宗. 非平衡等离子体与多孔炭材料降解染料废水的协同效应[D]. 中国石油大学, 2008. (ZHANG Yao-zong. Synergistic effect on degrading dye wastewater by non-equilibrium plasma and porous carbonaceous materials[D]. China University of Petroleum, 2008.)
    Pradhan B K, Sandle N K. Effect of different oxidizing agent treatments on the surface properties of activated carbons[J]. Carbon, 1999, 37(8): 1323-1332.
    Jiang B, Zheng J, Lu X, et al. Degradation of organic dye by pulsed discharge non-thermal plasma technology assisted with modified activated carbon fibers[J]. Chemical Engineering Journal, 2013, 215: 969-978.
    赵 薇. 气相沿面放电/活性炭纤维吸附联合处理双酚A废水的研究[D]. 大连理工大学, 2011. (ZHAO Wei. Investigation on dispose of bisphenol a by gas-surface diseharge combined with ACF adsorption[D]. Dalian University of Technology, 2011.)
    Lu X, Sun Y, Feng J, et al. Degradation of triclosan in aqueous solution by dielectric barrier discharge plasma combined with activated carbon fibers[J]. Chemosphere, 2015, 144: 855-863.
    Lukes P, Clupek M, Sunka P, et al. Degradation of phenol by underwater pulsed corona discharge in combination with TiO2 photocatalysis[J]. Research on Chemical Intermediates, 2005, 31(4): 285-294.
    Grymonpré D R, Sharma A K, Finney W C, et al. The role of Fenton's reaction in aqueous phase pulsed streamer corona reactors[J]. Chemical Engineering Journal, 2001, 82(1): 189-207.
    Hao X, Zhou M, Xin Q, et al. Pulsed discharge plasma induced Fenton-like reactions for the enhancement of the degradation of 4-chlorophenol in water[J]. Chemosphere, 2007, 66(11): 2185-2192.
    逯 秀. 非平衡等离子体与活性炭纤维联合处理染料废水的实验研究[D]. 中国石油大学, 2011. (Lu X. Experimental study of treating dye wastewater by non-equilibrium plasma combined with activated carbon fiber[D]. China University of Petroleum, 2011.)
    Carbajo M, Beltrán F J, Gimeno O, et al. Ozonation of phenolic wastewaters in the presence of a perovskite type catalyst[J]. Applied Catalysis B: Environmental, 2007, 74(3): 203-210.
    李来胜, 祝万鹏, 李中和. 催化臭氧化吸附技术去除难降解污染物[J]. 中国给水排水, 2002, 18 (5):23-25. (Li L, Zhu W, Li Z. Catalytic ozonation technology to remove refractory pollutants[J]. China Water & Wastewater, 2002, 18(5): 23-25.)
    CALY L. Interfacial chemistry and electrochemistry of carbon surfaces[J]. Chemistry and physics of carbon, 1994, 24: 213-310.
    Fujita H, Izumi J, Sagehashi M, et al. Adsorption and decomposition of water-dissolved ozone on high silica zeolites[J]. Water Research, 2004, 38(1): 159-165.
    孙秋红. 吸附-臭氧氧化处理对硝基苯酚废水[D]. 大连理工大学, 2011. (SUN Qiu-hong. Decomposition of p-nitrophenol in water by adsorption-ozonation process[D]. Dalian University of Technology, 2011.)
    尹艳娥. 新一代水处理技术研究-臭氧-生物活性炭纤维[D]. 同济大学, 2007. (Yin Y. Study on the new generation water treatment technique ozone-biological activated carbon fiber[D]. Tongji University, 2007.)
    Fenton H J H. LXXIII. Oxidation of tartaric acid in presence of iron[J]. Journal of the Chemical Society, Transactions, 1894, 65: 899-910.
    Haber F, Weiss J. The catalytic decomposition of hydrogen peroxide by iron salts[C]. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. The Royal Society, 1934, 147(861): 332-351.
    Neyens E, Baeyens J. A review of classic Fenton's peroxidation as an advanced oxidation technique[J]. Journal of Hazardous materials, 2003, 98(1): 33-50.
    De la Plata G B O, Alfano O M, Cassano A E. Decomposition of 2-chlorophenol employing goethite as Fenton catalyst II: Reaction kinetics of the heterogeneous Fenton and photo-Fenton mechanisms[J]. Applied Catalysis B: Environmental, 2010, 95(1): 14-25.
    Garrido-Ramírez E G, Theng B K G, Mora M L. Clays and Oxide Minerals as Catalysts and Nanocatalysts in Fenton-Like Reactions a Review[J]. Applied Clay Science, 2010, 47(3-4), 182-192.
    Alrehaily L M, Joseph J M, Musa A Y, et al. Gamma-radiation induced formation of chromium oxide nanoparticles from dissolved dichromate[J]. Physical Chemistry Chemical Physics, 2013, 15(1): 98-107.
    Yao Y, Wang L, Sun L, et al. Efficient removal of dyes using heterogeneous Fenton catalysts based on activated carbon fibers with enhanced activity[J]. Chemical Engineering Science, 2013, 101: 424-431.
    Fan H J, Chen I W, Lee M H, et al. Using FeGAC/H2O2 process for landfill leachate treatment[J]. Chemosphere, 2007, 67(8): 1647-1652.
    Zazo J A, Casas J A, Mohedano A F, et al. Catalytic wet peroxide oxidation of phenol with a Fe/active carbon catalyst[J]. Applied Catalysis B: Environmental, 2006, 65(3): 261-268.
    Wang L, Yao Y, Zhang Z, et al. Activated carbon fibers as an excellent partner of Fenton catalyst for dyes decolorization by combination of adsorption and oxidation[J]. Chemical Engineering Journal, 2014, 251: 348-354.
    Nguyen T D, Phan N H, Do M H, et al. Magnetic Fe2MO4 (M: Fe, Mn) activated carbons: fabrication, characterization and heterogeneous Fenton oxidation of methyl orange[J]. Journal of Hazardous Materials, 2011, 185(2): 653-661.
    Sun L, Yao Y, Wang L, et al. Efficient removal of dyes using activated carbon fibers coupled with 8-hydroxyquinoline ferric as a reusable Fenton-like catalyst[J]. Chemical Engineering Journal, 2014, 240(6): 413-419.
    Duarte F, Maldonado-Hódar F J, Madeira L M. Influence of the characteristics of carbon materials on their behaviour as heterogeneous Fenton catalysts for the elimination of the azo dye Orange II from aqueous solutions[J]. Applied Catalysis B: Environmental, 2011, 103(1): 109-115.
    Do M H, Phan N H, Nguyen T D, et al. Activated carbon/Fe3O4 nanoparticle composite: fabrication, methyl orange removal and regeneration by hydrogen peroxide[J]. Chemosphere, 2011, 85(8): 1269-1276.
    Yao Y, Mao Y, Huang Q, et al. Enhanced decomposition of dyes by hemin-ACF with significant improvement in pH tolerance and stability[J]. Journal of Hazardous Materials, 2014, 264: 323-331.
    Duarte F M, Maldonado-Hódar F J, Madeira L M. Influence of the iron precursor in the preparation of heterogeneous Fe/activated carbon Fenton-like catalysts[J]. Applied Catalysis A: General, 2013, 458: 39-47.
    Fontecha-Cámara M A, Álvarez-Merino M A, Carrasco-Marín F, et al. Heterogeneous and homogeneous Fenton processes using activated carbon for the removal of the herbicide amitrole from water[J]. Applied Catalysis B: Environmental, 2011, 101(3): 425-430.
    周 文. 过氧化氢催化新材料的制备及其催化处理内分泌干扰物双酚A[D]. 重庆理工大学, 2012. (Zhou Wen. Preparation of neyv catalysts for hydrogen peroxide and their application in catalytic degradation of bisphenol A[D]. Chongqing University of Technology, 2012.)
    何 莼, 奚红霞, 张 娇, 等. 沸石和活性炭为载体的 Fe3+和Cu2+ 型催化剂催化氧化苯酚的比较[J]. 离子交换与吸附, 2003, 19(4): 289-296. (He Chun, Xi Hong-xia, Zhang Jiao, et al. Comparisons of catalytic oxidation of phenol by Fe3+ and Cu2+ Catalysis supported by permutite and activated carbon[J]. Ion Exchange and Adsorption, 2003, 19(4): 289-296.)
    Singh P, Raizada P, Kumari S, et al. Solar-Fenton removal of malachite green with novel Fe 0-activated carbon nanocomposite[J]. Applied Catalysis A: General, 2014, 476: 9-18.
    Wang L, Yao Y, Sun L, et al. Rapid removal of dyes under visible irradiation over activated carbon fibers supported Fe (III)-citrate at neutral pH[J]. Separation and Purification Technology, 2014, 122: 449-455.
    范 丽. 染料在铂和活性炭纤维电极上的电化学行为[D]. 大连理工大学, 2005. (Electrochemical behaviour of dyes on platinum and activated carbon fiber electrodes[D]. Dalian University of Technology, 2005.)
    Comninellis C. Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment[J]. Electrochimica Acta, 1994, 39(11): 1857-1862.
    Simond O, Schaller V, Comninellis C. Theoretical model for the anodic oxidation of organics on metal oxide electrodes[J]. Electrochimica Acta, 1997, 42(13): 2009-2012.
    Marincic L, Leitz F B. Electro-oxidation of ammonia in waste water[J]. Journal of Applied Electrochemistry, 1978, 8(4): 333-345.
    贾冰玉. 染料类有机污染物在活性炭纤维电极上的吸附及高级氧化处理研究[D]. 兰州大学, 2006. (JIA Bing-yu. Study of the absorption and advanced oxidation processes (AOPs) treatment of organic dye pollution on activated carbon fiber (ACF) electrode[D]. Lanzhou University, 2006.)
    李一凡. 活性炭纤维运用电化学方法去除阿特拉津的研究[D]. 安徽理工大学, 2013. (LI Yi-fan. Applied research of activated carbon fibers using electrochemical methods to remove atrazine[D]. Anhui University of Science and Technology, 2013.)
    Fan L, Zhou Y, Yang W, et al. Electrochemical degradation of Amaranth aqueous solution on ACF[J]. Journal of hazardous materials, 2006, 137(2): 1182-1188.
    Li G, Feng Y, Chai X, et al. Adsorption of cyclic organics generated during electrochemical oxidation of Orange II by activated carbon fibres and toxicity[J]. Journal of Water Process Engineering, 2015, 7: 21-26.
  • 加载中
计量
  • 文章访问数:  624
  • HTML全文浏览量:  87
  • PDF下载量:  669
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-10
  • 录用日期:  2016-01-05
  • 修回日期:  2015-12-02
  • 刊出日期:  2015-12-28

目录

    /

    返回文章
    返回