留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤基石墨烯宏观体的制备及其在CO2光催化还原过程中的应用

张亚婷 李可可 刘国阳 周安宁 王露 邱介山

张亚婷, 李可可, 刘国阳, 周安宁, 王露, 邱介山. 煤基石墨烯宏观体的制备及其在CO2光催化还原过程中的应用. 新型炭材料, 2015, 30(6): 539-544.
引用本文: 张亚婷, 李可可, 刘国阳, 周安宁, 王露, 邱介山. 煤基石墨烯宏观体的制备及其在CO2光催化还原过程中的应用. 新型炭材料, 2015, 30(6): 539-544.
ZHANG Ya-ting, LI Ke-ke, LIU Guo-yang, ZHOU An-ning, WANG Lu, QIU Jie-shan. Synthesis and photocatalytic CO2 reduction activity of a coal-based graphene assembly. New Carbon Mater., 2015, 30(6): 539-544.
Citation: ZHANG Ya-ting, LI Ke-ke, LIU Guo-yang, ZHOU An-ning, WANG Lu, QIU Jie-shan. Synthesis and photocatalytic CO2 reduction activity of a coal-based graphene assembly. New Carbon Mater., 2015, 30(6): 539-544.

煤基石墨烯宏观体的制备及其在CO2光催化还原过程中的应用

基金项目: 国家自然科学基金(21276207,U1203292).
详细信息
    作者简介:

    张亚婷,副教授.E-mail:isyating@163.com

    通讯作者:

    周安宁,教授.E-mail:13609282106@139.com;邱介山,教授.E-mail:jqiu@dlut.edu.cn

  • 中图分类号: TQ517.3

Synthesis and photocatalytic CO2 reduction activity of a coal-based graphene assembly

Funds: National Natural Science Foundation of China (21276207, U1203292).
  • 摘要: 石墨烯是一种新型二维碳质材料,以石墨烯为基本结构单元构筑宏观石墨烯材料是石墨烯走向实际应用的重要途径。以煤基石墨为原料,综合采用Hummers法、化学还原及冷冻干燥过程制备出煤基石墨烯宏观体。利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、傅里叶红外光谱(FT-IR)、拉曼光谱等对样品形貌结构进行了分析表征。此外,以煤基石墨烯宏观体为光催化剂填料搭建固定床反应器,应用于CO2光催化还原过程。结果表明,煤基石墨烯宏观体对CO2光催化还原反应具有较高的催化活性,目标产物甲醇的产率最高可达65.91 μmol/g·cat。
  • Lacis A A, Schmidt G A, Rind D, et al. Atmospheric CO2: Principal control knob governing Earth's temperature[J]. Science, 2010, 330(6002): 356-359.
    Das S, Daud W M A W. A review on advances in photocatalysts towards CO2 conversion[J]. Rsc Advances, 2014, 4(40): 20856-20893.
    Sastre F, Puga A V, Liu L, et al. Complete photocatalytic reduction of CO2 to methane by H2 under solar light irradiation[J]. Journal of the American Chemical Society, 2014, 136(19): 6798-6801.
    Taheri Najafabadi A. CO2 chemical conversion to useful products: an engineering insight to the latest advances toward sustainability[J]. International Journal of Energy Research, 2013, 37(6): 485-499.
    吴聪萍, 周 勇, 邹志刚. 光催化还原CO2的研究现状和发展前景[J]. 催化学报, 2011, 32(10): 1565-1572. (Wu C P, Zhou Y, Zou Z G. Research progress in photocatalytic conversion of CO2[J]. Chinese Journal of Catalysis, 2011, 32(10): 1565-1572.)
    Machado B F, Serp P. Graphene-based materials for catalysis[J]. Catalysis Science & Technology, 2012, 2(1): 54-75.
    Liu W, Cai J, Ding Z, et al. TiO2/RGO composite aerogels with controllable and continuously tunable surface wettability for varied aqueous photocatalysis[J]. Applied Catalysis B: Environmental, 2015, 174: 421-426.
    张丽芳, 魏 伟, 吕 伟, 等. 石墨烯基宏观体: 制备, 性质及潜在应用[J]. 新型炭材料, 2013, 28(3): 161-171. (Zhang L F, Wei W, Lv W, et al. Graphene-based macroform: preparation, properties and applications[J]. New Carbon Materials, 2013, 28(3): 161-171.)
    Fechete I, Wang Y, Védrine J C. The past, present and future of heterogeneous catalysis[J]. Catalysis Today, 2012, 189(1): 2-27.
    Tang Z, Shen S, Zhuang J, et al. Noble-metal- promoted three-dimensional macroassembly of single-layered graphene oxide[J]. Angewandte Chemie, 2010, 122(27): 4707-4711.
    Fan X, Manchon M G, Wilson K, et al. Coupling of Heck and hydrogenation reactions in a continuous compact reactor[J]. Journal of Catalysis, 2009, 267(2): 114-120.
    王旭珍, 刘 宁, 胡 涵, 等. 3D 二硫化钼/石墨烯组装体的制备及其催化脱硫性能[J]. 新型炭材料, 2014, 29(2): 81-88. (Wang X Z, Liu N, Hu H, et al. Fabrication of three-dimensional MoS2/graphene hybrid monoliths and their catalytic performance for hydrodesulfurization[J]. New Carbon Materials, 2014, 29(2): 81-88.)
    张亚婷, 周安宁, 张晓欠, 等. 以太西无烟煤为前驱体制备煤基石墨烯的研究[J]. 煤炭转化, 2013, 36(4): 57-61. (Zhang Y T, Zhou A N, Zhang X Q, et al. Preparation of the Graphene from TaiXi Anthracite[J]. Coal Conversion, 2013, 36(4): 57-61.)
    William S, Hummers J R, Offeman R E. Preparation of graphitic oxide[J]. J Am Chem Soc, 1958, 80(6): 1339.
    Bi H, Yin K, Xie X, et al. Low temperature casting of graphene with high compressive strength[J]. Advanced Materials, 2012, 24(37): 5124-5129.
    Worsley M A, Olson T Y, Lee J R I, et al. High surface area, sp2-cross-linked three-dimensional graphene monoliths[J]. The Journal of Physical Chemistry Letters, 2011, 2(8): 921-925.
    Pham H D, Pham V H, Cuong T V, et al. Synthesis of the chemically converted graphene xerogel with superior electrical conductivity[J]. Chemical Communications, 2011, 47(34): 9672-9674.
    Tong X, Wang H, Wang G, et al. Controllable synthesis of graphene sheets with different numbers of layers and effect of the number of graphene layers on the specific capacity of anode material in lithium-ion batteries[J]. Journal of Solid State Chemistry, 2011, 184(5): 982-989.
    Tang B, Guoxin H, Gao H. Raman spectroscopic characterization of graphene[J]. Applied Spectroscopy Reviews, 2010, 45(5): 369-407.
    吴娟霞, 徐 华, 张 锦. 拉曼光谱在石墨烯结构表征中的应用[J]. 化学学报, 2014, 72(3): 301-318. (Wu J X, Xu H, Zhang J. Raman spectroscopy of graphene[J]. Acta Chim Sinica, 2014, 72(3): 301-318.)
    Malard L M, Nilsson J, Elias D C, et al. Probing the electronic structure of bilayer graphene by Raman scattering[J]. Physical Review B, 2007, 76(20): 201401.
  • 加载中
计量
  • 文章访问数:  756
  • HTML全文浏览量:  139
  • PDF下载量:  766
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-26
  • 录用日期:  2016-01-05
  • 修回日期:  2015-12-02
  • 刊出日期:  2015-12-28

目录

    /

    返回文章
    返回