留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

N掺杂石墨烯量子点的制备及其光催化降解性能

李冬辉 樊洁心 王晓敏

李冬辉, 樊洁心, 王晓敏. N掺杂石墨烯量子点的制备及其光催化降解性能. 新型炭材料, 2015, 30(6): 545-549.
引用本文: 李冬辉, 樊洁心, 王晓敏. N掺杂石墨烯量子点的制备及其光催化降解性能. 新型炭材料, 2015, 30(6): 545-549.
LI Dong-hui, FAN Jie-xin, WANG Xiao-min. Preparation of N-doped graphene quantum dots and their photocatalytic degradation activity for methylene blue. New Carbon Mater., 2015, 30(6): 545-549.
Citation: LI Dong-hui, FAN Jie-xin, WANG Xiao-min. Preparation of N-doped graphene quantum dots and their photocatalytic degradation activity for methylene blue. New Carbon Mater., 2015, 30(6): 545-549.

N掺杂石墨烯量子点的制备及其光催化降解性能

基金项目: 国家自然科学基金(51172152,51242007,51572184).
详细信息
    作者简介:

    李冬辉,硕士研究生.E-mail:15735160971@163.com

    通讯作者:

    王晓敏,教授.E-mail:wangxiaomin@tyut.edu.cn

  • 中图分类号: TQ127.1+1

Preparation of N-doped graphene quantum dots and their photocatalytic degradation activity for methylene blue

Funds: National Natural Science Foundation of China (51172152, 51242007, 51572184).
  • 摘要: 石墨烯量子点(GQDs)作为绿色、经济的新型碳质纳米材料在有机污染物的降解、能源利用方面有着广泛的应用前景。以柠檬酸为碳源,尿素作为氮源,通过水热法制备出尺寸均匀、高荧光的N掺杂石墨烯量子点(N-GQDs)。通过X射线衍射、拉曼光谱、透射电子显微镜、荧光光谱、紫外可见吸收光谱等手段对N-GQDs的晶型结构、微观形貌、表面官能团分布和光物理性能进行表征。通过MTT法对N-GQDs的毒性进行检测,又通过对亚甲基蓝(MB)的光催化降解考察样品的光催化性能。结果表明,制备的N-GQDs尺寸均匀、荧光强度高且毒性低。由于N原子的成功掺杂,N-GQDs作为光催化剂在可见光下对MB进行光催化降解比MB的自身降解更快,在短时间内(120 min)降解率可以达到82.5%。
  • Zhang R, He S, Zhang C, et al. Three-dimensional Fe-and N-incorporated carbon structures as peroxidase mimics for fluorescence detection of hydrogen peroxide and glucose[J]. Journal of Materials Chemistry B, 2015, 3(20): 4146-4154.
    Sadhukhan M, Barman S. Bottom-up fabrication of two-dimensional carbon nitride and highly sensitive electrochemical sensors for mercuric ions[J]. J Mater Chem a, 2013, 1(8): 2752-2756.
    Tian J, Liu Q, Asiri A M, et al. Ultrathin graphitic carbon nitride nanosheets: a novel peroxidase mimetic, Fe doping-mediated catalytic performance enhancement and application to rapid, highly sensitive optical detection of glucose[J]. Nanoscale, 2013, 5(23): 11604-11609.
    Denis P A, Faccio R, Mombru A W. Is it possible to dope single-walled carbon nanotubes and graphene with sulfur[J]. Chem Phys Chem, 2009, 10(4): 715-722.
    Zheng F, Wang Z, Chen J, et al. Synthesis of carbon quantum dot-surface modified P25 nanocomposites for photocatalytic degradation of p-nitrophenol and acid violet 43[J]. RSC Advances, 2014, 4(58): 30605-30609.
    Di J, Xia J, Ji M, et al. The synergistic role of carbon quantum dots for the improved photocatalytic performances of Bi2MoO6[J]. Nanoscale, 2015.
    Saud P S, Pant B, Alam A M, et al. Carbon quantum dots anchored TiO2 nanofibers: Effective photocatalyst for waste water treatment[J]. Ceramics International, 2015, 41(9): 11953-11959.
    Gupta B K, Kedawat G, Agrawal Y, et al. A novel strategy to enhance ultraviolet light driven photocatalysis from graphene quantum dots infilled TiO2 nanotube arrays[J]. RSC Advances, 2015, 5(14): 10623-10631.
    Baker S N, Baker G A. Luminescent carbon nanodots: Emergent nanolights[J]. Angewandte Chemie International Edition, 2010, 49(38): 6726-6744.
    Li H, He X, Kang Z, et al. Water-soluble fluorescent carbon quantum dots and photocatalyst design[J]. Angewandte Chemie International Edition, 2010, 49(26): 4430-4434.
    Cao L, Wang X, Meziani M J, et al. Carbon dots for multiphoton bioimaging[J]. Journal of the American Chemical Society, 2007, 129(37): 11318-11319.
    Hu S L, Niu K Y, Sun J, et al. One-step synthesis of fluorescent carbon nanoparticles by laser irradiation[J]. Journal of Materials Chemistry, 2009, 19(4): 484-488.
    Li H, He X, Liu Y, et al. One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties[J]. Carbon, 2011, 49(2): 605-609.
    Shen J, Zhu Y, Chen C, et al. Facile preparation and upconversion luminescence of graphene quantum dots[J]. Chem Commun, 2011, 47(9): 2580-2582.
    Yan X, Cui X, Li L S, Synthesis of large, stable colloidal graphene quantum dots with tunable size[J]. Journal of the American Chemical Society, 2010, 132(17): 5944-5945.
    Li Y,Zhao Y, Cheng H, et al. Nitrogen-doped graphene quantum dots with oxygen-rich functional groups[J]. Journal of the American Chemical Society, 2011, 134(1): 15-18.
    Fu M, Jiao Q, Zhao Y. Preparation of NiFe2O4 nanorod-graphene composites via an ionic liquid assisted one-step hydrothermal approach and their microwave absorbing properties[J]. Journal of Materials Chemistry A, 2013, 1(18): 5577-5586.
    Bai X, Wang L, Zong R, et al. Performance enhancement of ZnO photocatalyst via synergic effect of surface oxygen defect and graphene hybridization[J]. Langmuir, 2013, 29(9): 3097-3105.
    Tang L, Ji R, Cao X, et al. Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots[J]. ACS nano, 2012, 6(6): 5102-5110.
    Tang L, Ji R, Li X, et al. Deep ultraviolet to near-infrared emission and photoresponse in layered N-doped graphene quantum dots[J]. ACS nano, 2014, 8(6): 6312-6320.
    Wahyuningsih S, Purnawan C, Kartikasari P A, et al. Visible light photoelectrocatalytic degradation of rhodamine B using a dye-sensitised TiO2 electrode[J]. Chemical Papers, 2014, 68(9): 1248-1256.
  • 加载中
计量
  • 文章访问数:  846
  • HTML全文浏览量:  159
  • PDF下载量:  1322
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-03
  • 录用日期:  2016-01-05
  • 修回日期:  2015-12-10
  • 刊出日期:  2015-12-28

目录

    /

    返回文章
    返回