留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

3-氨基三乙氧基硅烷偶联剂 修饰Si基高性能锂离子电池负极材料

李肖 宋燕 田晓冬 王凯 郭全贵 刘朗

李肖, 宋燕, 田晓冬, 王凯, 郭全贵, 刘朗. 3-氨基三乙氧基硅烷偶联剂 修饰Si基高性能锂离子电池负极材料. 新型炭材料, 2015, 30(6): 587-593.
引用本文: 李肖, 宋燕, 田晓冬, 王凯, 郭全贵, 刘朗. 3-氨基三乙氧基硅烷偶联剂 修饰Si基高性能锂离子电池负极材料. 新型炭材料, 2015, 30(6): 587-593.
LI Xiao, SONG Yan, TIAN Xiao-dong, WANG Kai, GUO Quan-gui, LIU Lang. Surface-modified Si nanoparticles produced from 3- aminotriethoxysilane as an anode material for a high performance lithium-ion battery. New Carbon Mater., 2015, 30(6): 587-593.
Citation: LI Xiao, SONG Yan, TIAN Xiao-dong, WANG Kai, GUO Quan-gui, LIU Lang. Surface-modified Si nanoparticles produced from 3- aminotriethoxysilane as an anode material for a high performance lithium-ion battery. New Carbon Mater., 2015, 30(6): 587-593.

3-氨基三乙氧基硅烷偶联剂 修饰Si基高性能锂离子电池负极材料

基金项目: 山西省自然科学基金(2012011219-3);中国科学院山西煤炭化学研究所杰出青年人才项目.
详细信息
    作者简介:

    李肖,硕士研究生.E-mail:lx502118635@163.com

    通讯作者:

    宋燕,研究员.E-mail:yansong1026@126.com

  • 中图分类号: TQ127.1+1

Surface-modified Si nanoparticles produced from 3- aminotriethoxysilane as an anode material for a high performance lithium-ion battery

Funds: Natural Science Foundation of Shanxi Province (2012011219-3); Outstanding Young Talent Fund of Institute of Coal chemistry, Chinese Academy of Sciences.
  • 摘要: 为了提高硅碳复合材料中硅的使用效率,使用3-氨基三乙氧基硅烷偶联剂(3-APTS)对硅纳米颗粒进行表面修饰,制备了3-APTS-Si@C/G复合材料。采用SEM、TEM、FT-IR、TGA、Raman等对材料微观形貌、结构及组分进行表征。结果表明,3-APTS对硅纳米颗粒有良好的分散作用,没有发现明显的硅颗粒团聚现象。3-APTS-Si@C/G复合材料呈现yolk-shell结构,其作为锂离子电池负极材料表现出优异的电化学性能。在100 mA·g-1的电流密度下,首次可逆容量为1 699 mAh·g-1,50次循环后可逆容量为913 mAh·g-1,35次循环后容量保持率为99.6%,明显高于Si@C/G复合材料(首次可逆比容量为652.9 mAh·g-1,50次循环之后可逆比容量为541 mAh·g-1)。当电流密度达到1 500 mA·g-1时,其可逆容量可达到480 mAh·g-1
  • Simon P, Gogotsi Y, Dunn B. Where do batteries end and supercapacitors begin?[J] Science, 2014, 343(6176): 1210-1211.
    张瑛洁, 刘洪兵. 锂离子电池硅—碳复合负极材料的研究进展[J]. 硅酸盐通报, 2015, 34(4): 989-994. ZHANG Ying-jie,LIU Hong-bing. Research progress on Si/C composite anode materials for lithium-ion battery[J].Bulletin of the Chinese Ceramic Society, 2015, 34(4): 989-994.
    Hassan FM, Chabot V, Elsayed AR, et al. Engineered Si electrode nanoarchitecture: a scalable postfabrication treatment for the production of next-generation Li-ion batteries[J]. Nano Letters, 2014, 14(1): 277-283.
    Choi S, Bok T, Ryu J, et al. Revisit of metallothermic reduction for macroporous Si: compromise between capacity and volume expansion for practical Li-ion battery[J]. Nano Energy. 2015, 12: 161-168.
    Choi SH, Jung DS, Choi JW, et al. Superior lithium-ion storage properties of si-based composite powders with unique Si@carbon@void@graphene configuration[J]. Chemistry. 2015, 21(5): 2076-2082.
    Feng M, Tian J, Xie H, et al. Nano-silicon/polyaniline composites with an enhanced reversible capacity as anode materials for lithium ion batteries[J]. Journal of Solid State Electrochemistry. 2015, 19(6): 1773-1782.
    Liang J, Li X, Zhu Y, et al. Hydrothermal synthesis of nano-silicon from a silica sol and its use in lithium ion batteries[J]. Nano Research. 2014, 8(5): 1497-1504.
    Zhu J, Chen L, Xu Z, et al. Electrospinning preparation of ultra-long aligned nanofibers thin films for high performance fully flexible lithium-ion batteries[J]. Nano Energy. 2015, 12: 339-346.
    Lu Z, Wong T, Ng T-W, et al. Facile synthesis of carbon decorated silicon nanotube arrays as anode material for high-performance lithium-ion batteries[J]. RSC Advances. 2014, 4(5): 2440-2446.
    Omampuliyur RS, Bhuiyan M, Han Z, et al. Nanostructured thin film silicon anodes for Li-ion microbatteries[J]. Journal of Nanoscience and Nanotechnology. 2015, 15(7): 4926-4933.
    Li X, Zhi L. Managing voids of Si anodes in lithium ion batteries[J]. Nanoscale. 2013, 5(19): 8864-8873.
    Wu S, Ge R, Lu M, et al. Graphene-based nano-materials for lithium-sulfur battery and sodium-ion battery[J]. Nano Energy. 2015, 15: 379-405.
    Yi R, Zai J, Dai F, et al. Dual conductive network-enabled graphene/Si-C composite anode with high areal capacity for lithium-ion batteries[J]. Nano Energy. 2014, 6: 211-218.
    Chen S, Bao P, Huang X, et al. Hierarchical 3D mesoporous silicon@graphene nanoarchitectures for lithium ion batteries with superior performance[J]. Nano Research. 2013, 7(1): 85-94.
    Fang C, Deng Y, Xie Y, et al. Improving the electrochemical performance of Si Nanoparticle anode material by synergistic strategies of polydopamine and graphene oxide coatings[J]. The Journal of Physical Chemistry C. 2015, 119(4): 1720-1728.
    Zhou M, Cai T, Pu F, et al. Graphene/carbon-coated Si nanoparticle hybrids as high-performance anode materials for Li-ion batteries[J]. ACS Applied Materials & Interfaces. 2013, 5(8): 3449-3455.
    Xu C, Lindgren F, Philippe B, et al. Improved performance of the silicon anode for Li-ion batteries: understanding the surface modification mechanism of fluoroethylene carbonate as an effective electrolyte additive[J]. Chemistry of Materials. 2015, 27(7): 2591-2599.
    Kovalenko I ZB, Magasinski A, Hertzberg B, et al. A major constituent of brown algae for use in high-capacity Li-ion batteries[J]. Science. 2011, 334: 75-79.
    Zhou M, Pu F, Wang Z, et al. Facile synthesis of novel Si nanoparticles-graphene composites as high-performance anode materials for Li-ion batteries[J]. Physical Chemistry Chemical Physics. 2013, 15(27): 11394-11401.
    Yang S, Li G, Zhu Q, et al. Covalent binding of Si nanoparticles to graphene sheets and its influence on lithium storage properties of Si negative electrode[J]. Journal of Materials Chemistry. 2012, 22(8): 3420-3425.
    Hu Y-S, Demir-Cakan R, Titirici M-M, et al. Superior storage performance of a Si@SiOx/C nanocomposite as anode material for Lithium-ion batteries[J]. Angewandte Chemie International Edition. 2008, 47(9): 1645-1649.
    Guzman RC, Yang J, Cheng MM-C, et al. Effects of graphene and carbon coating modifications on electrochemical performance of silicon nanoparticle/graphene composite anode[J]. Journal of Power Sources. 2014, 246: 335-345.
    Gan L, Guo H, Wang Z, et al. A facile synthesis of graphite/silicon/graphene spherical composite anode for lithium-ion batteries[J]. Electrochimica Acta, 2013, 104: 117-123.
    Ma C, Wang J, Wang H, et al. Exfoliated graphite as a flexible and conductive support for Si-based Li-ion battery anodes[J]. Carbon, 2014, 72: 38-46.
    Li FS, Wu YS, Chou J, et al. A dimensionally stable and fast-discharging graphite-silicon composite Li-ion battery anode enabled by electrostatically self-assembled multifunctional polymer-blend coating[J]. Chemical Communications, 2015, 51(40): 8429-8431.
  • 加载中
计量
  • 文章访问数:  593
  • HTML全文浏览量:  78
  • PDF下载量:  667
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-20
  • 录用日期:  2016-01-05
  • 修回日期:  2015-12-08
  • 刊出日期:  2015-12-28

目录

    /

    返回文章
    返回