留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纳米管互连技术新进展

杨立军 崔健磊 王扬 梅雪松 王文君 谢晖

杨立军, 崔健磊, 王扬, 梅雪松, 王文君, 谢晖. 碳纳米管互连技术新进展. 新型炭材料, 2016, 31(1): 1-17.
引用本文: 杨立军, 崔健磊, 王扬, 梅雪松, 王文君, 谢晖. 碳纳米管互连技术新进展. 新型炭材料, 2016, 31(1): 1-17.
YANG Li-jun, CUI Jian-lei, WANG Yang, MEI Xue-song, WANG Wen-jun, XIE Hui. Research progress on the interconnection of carbon nanotubes. New Carbon Mater., 2016, 31(1): 1-17.
Citation: YANG Li-jun, CUI Jian-lei, WANG Yang, MEI Xue-song, WANG Wen-jun, XIE Hui. Research progress on the interconnection of carbon nanotubes. New Carbon Mater., 2016, 31(1): 1-17.

碳纳米管互连技术新进展

基金项目: 国家自然科学基金(51505371,51275122);中国博士后科学基金(2014M562397,2015T81018);中央高校基本科研业务费专项资金(xjj2015009);陕西省博士后科研项目;机器人技术与系统国家重点实验室开放研究项目(SKLRS-2016-KF-13).
详细信息
    作者简介:

    杨立军,副教授.E-mail:yljtj@hit.edu.cn

    通讯作者:

    王扬,教授.E-mail:wyyh@hit.edu.cn,cjlxjtu@xjtu.edu.cn

  • 中图分类号: TB383

Research progress on the interconnection of carbon nanotubes

Funds: National Natural Science Foundation of China(51505371,51275122);China Postdoctoral Science Foundation(2014M562397,2015T81018);Fundamental Research Funds for the Central Universities(xjj2015009);Shaanxi Postdoctoral Scientific Research Project Funds;State Key Laboratory of Robotics and System(HIT)(SKLRS-2016-KF-13).
  • 摘要: 随着功能器件互连导线的规模逐渐扩大,导线的尺寸不断减小,量子效应明显加强,未来将导致目前采用铜互连技术的微纳功能器件无法遵循传统半导体物理的原理工作。碳纳米管凭借其独特的一维纳米结构而具有优越的电学、热学及机械等性能,有望取代铜连线而成为下一代芯片的互连导线材料,而碳纳米管的互连技术则是结构制造、功能器件制备或其组装不可或缺的重要环节,现已成为国际新材料领域的研究前沿和热点,本文详细概述碳纳米管作为互连导线的优越性能、互连形式、互连技术的最新研究进展以及应用前景。
  • De Ceuninck W A, D'Haeger V, Van Olmen J, et al.The influence of addition elements on the early resistance changes observed during electromigration testing of Al metal lines[J].Microelectron Reliab, 1998, 38(1):87-98.
    Buerke A, Wendrock H, Wetzig K.Study of electromigration damage in Al interconnect lines inside a SEM[J].Cryst Res Technol, 2000, 35(6-7):721-730.
    Semiconductor Industry Association, International Technology Roadmap for Semiconductors, 2013, Update, http://public.itrs.net/.
    Ceyhan A, Naeemi A.Cu interconnect limitations and opportunities for SWNT interconnects at the end of the roadmap[J].IEEE T Electron Dev, 2013, 60(1):374-382.
    Murugeswari P, Kabilan A P, Vaishnavi M, et al.Performance analysis of single-walled carbon nanotube and multi-walled carbon nanotube in 32 nm technology for on-chip interconnect applications[C]//Computing, Communication and Networking Technologies(ICCCNT), 2014 International Conference on.IEEE, 2014:1-6.
    Shulaker M M, Hills G, Patil N, et al.Carbon nanotube computer[J].Nature, 2013, 501(7468):526-530.
    Kreupl F.Electronics:The carbon-nanotube computer has arrived[J].Nature, 2013, 501(7468):495-496.
    Iijima S.Helical microtubules of graphitic carbon[J].Nature, 1991, 354(6348):56.
    Li H, Xu C, Srivastave N, et al.Carbon nanomaterials for next-generation interconnects and passives:physics, status, and prospects[J].IEEE T Electron Dev, 2009, 56(9):1799-1821.
    Geier M L, McMorrow J J, Xu W C, et al.Solution-processed carbon nanotube thin-film complementary static random access memory[J].Nat Nanotechnol, 2015, 10(11):944-948.
    De Volder M F L, Tawfick S H, Baughman R H, et al.Carbon nanotubes:present and future commercial applications[J].Science, 2013, 339(6119):535-539.
    Franklin A D, Koswatta S O, Farmer D B, et al.Carbon nanotube complementary wrap-gate transistors[J].Nano Lett, 2013, 13(6):2490-2495.
    Suriyasena Liyanage L, Xu X Q, Pitner G, et al.VLSI-compatible carbon nanotube doping technique with low work-function metal oxides[J].Nano Lett, 2014, 14(4):1884-1890.
    Salahuddin S, Lundstrom M, Datta S, et al.Transport effects on signal propagation in quantum wires[J].IEEE T Electron Dev, 2005, 52(8):1734-1742.
    Li H, Liu W, Cassell A M, et al.Low-resistivity long-length horizontal carbon nanotube bundles for interconnect applications-Part I:process development[J].IEEE T Electron Dev, 2013, 60(9):2862-2869.
    Li H, Liu W, Cassell A M, et al.Low-resistivity long-length horizontal carbon nanotube bundles for interconnect applications-Part Ⅱ:characterization[J].IEEE T Electron Dev, 2013, 60(9):2870-2876.
    Johnson R D, Bahr D F, Richards C D, et al.Thermocompression bonding of vertically aligned carbon nanotube turfs to metalized substrates[J].Nanotechnology, 2009, 20(6):065703(1-6).
    Yung K P, Wei J, Tay B K.Formation and assembly of carbon nanotube bumps for interconnection applications[J].Diam Relat Mater, 2009, 18(9):1109-1113.
    Kaul A, Larry E, Wong E.Carbon nanotube mechanical relays for electronics[C].SPIE, 2008.
    Ting J M, Chang C C.Multijunction carbon nanotube network[J].Appl Phys Lett, 2002, 80(2):324-325.
    Do J W, Estrada D, Xie X, et al.Nanosoldering carbon nanotube junctions by local chemical vapor deposition for improved device performance[J].Nano Lett, 2013, 13(12):5844-5850.
    Zhang Y, Gong T, Jia Y, et al.Tailoring the intrinsic metallic states of double-walled nanotube films by self-soldered laser welding[J].Appl Phys Lett, 2007, 91(23):233109(3).
    Terrones M, Banhart F, Grobert N, et al.Molecular junctions by joining single-walled carbon nanotubes[J].Phys Rev Lett, 2002, 89(7):075505(1-4).
    Jang I, Sinnott S B, Danailov D, et al.Molecular dynamics simulation study of carbon nanotube welding under electron beam irradiation[J].Nano Lett, 2004, 4(1):109-114.
    O'Regan C, Lee A, Holmes J D, et al.Electrical properties of platinum interconnects deposited by electron beam induced deposition of the carbon-free precursor, Pt(PF3)4[J].J Vac Sci Technol B, 2013, 31(2):021807.
    Banhart F.The formation of a connection between carbon nanotubes in an electron beam[J].Nano Lett, 2001, 1(6):329-332.
    Kim S, Kulkarni D D, Rykaczewski K, et al.Fabrication of an ultralow-resistance ohmic contact to MWCNT-metal interconnect using graphitic carbon by electron beam-induced deposition(EBID)[J]., IEEE T Nanotechnol, 2012, 11(6):1223-1230.
    Fedorov A G, Kim S, Henry M, et al.Focused-electron-beam-induced processing(FEBIP) for emerging applications in carbon nanoelectronics[J].Appl Phys A, 2014, 117(4):1659-1674.
    Huth M, Porrati F, Schwalb C, et al.Focused electron beam induced deposition:A perspective[J].Beilstein J Nanotech, 2012, 3(1):597-619.
    Krasheninnikov A V, Nordlund K, Keinonen J.Ion-irradiation-induced welding of carbon nanotubes[J].Phys Rev B, 2002, 66(24):245403-1-245403-6.
    Rodríguez-Manzo J A, Tolvanen A, Krasheninnikov A V, et al.Defect-induced junctions between single-or double-wall carbon nanotubes and metal crystals[J].Nanoscale, 2010, 2(6):901-905.
    Wang Z X, Yu L, Zhang W, et al.Amorphous molecular junctions produced by ion irradiation on carbon nanotubes[J].Phys Lett A, 2004, 324(4):321-325.
    Ishaq A, Ni Z C, Yan L, et al.Constructing carbon nanotube junctions by Ar ion beam irradiation[J].Radiat Phys Chem, 2010, 79(6):687-691.
    Yan L, Zhou G Y, Ishaq A, et al.Improving the electrical conductivity of multi-walled carbon nanotube networks by H ion beam irradiation[J].Carbon, 2011, 49(6):2141-2144.
    Chen C X, Yan L J.Ultrasonic nanowelding of carbon nanotubes to metal electrodes[J].Nanotechnology, 2006, 17(9):2192-2197.
    Piper N M, Fu Y, Tao J, et al.Vibration promotes heat welding of single-walled carbon nanotubes[J].Chem Phys Lett, 2011, 502(4):231-234.
    Yu H, Dong Z, Li W J.Nanoscale welding of MWCNTs for nanodevice applications[C]//Nanotechnology Materials and Devices Conference(NMDC), IEEE, 2010:216-220.
    Duan X J, Zhang J, Ling X, et al.Nano-welding by scanning probe microscope[J].J Am Chem Soc, 2005, 127(23):8268-8269.
    Jiao N D, Wang Y C, Xi N, et al.AFM based anodic oxidation and its application to oxidative cutting and welding of CNT[J].Sci China Ser E, 2009, 52(11):3149-3157.
    Liu Z L, Jiao N D, Xu K, et al.Nanodot deposition and its application with atomic force microscope[J].J Nanopart Res, 2013, 15(6):1-11.
    Gong T, Zhang Y, Liu W J, et al.Connection of macro-sized double-walled carbon nanotube strands by bandaging with double-walled carbon nanotube films[J].Carbon, 2007, 45(11):2235-2240.
    Gong T, Zhang Y, Liu W J, et al.Connection of macro-sized double-walled carbon nanotube strands by current-assisted laser irradiation[J].J Laser Appl, 2008, 20(2):122-126.
    Dockendorf C P R, Steinlin M, Poulikakos.Individual carbon nanotube soldering with gold nanoink deposition[J].Appl Phys Lett, 2007, 90(19):193116-1-193116-3.
    Wu W, Hu A M, Li X G, et al.Vacuum brazing of carbon nanotube bundles[J].Mater Lett, 2008, 62(30):4486-4488.
    Peng Y, Cullis T, Inkson B.Bottom-up nanoconstruction by the welding of individual metallic nanoobjects using nanoscale solder[J].Nano Lett, 2009, 9(1):91-96.
    Cui J L, Yang L J, Wang Y, et al.Nanospot Soldering Polystyrene Nanoparticles with an Optical Fiber Probe Laser Irradiating a Metallic AFM Probe Based on the Near-Field Enhancement Effect[J].ACS Appl Mater Inter, 2015, 7(4):2294-2300.
    Yang L J, Cui J L, Wang Y, et al.Nanospot welding of carbon nanotubes using near-field enhancement effect of AFM probe irradiated by optical fiber probe laser[J].RSC Adv, 2015, 5(70):56677-56685.
    Piner R D, Zhu J, Xu F, et al."Dip-Pen" Nanolithography[J].Science, 1999, 283(5402):661-663.
    Maynor B W, Li Y, Liu J.Au "ink" for AFM "dip-pen" Nanolithography[J].Langmuir, 2001, 17:2575-2578.
    Li Y, Maynor B W, Liu J.Electrochemical AFM "dip-pen" nanolithography[J].J Am Chem Soc, 2001, 123(9):2105-2106.
    Shen G X, Lu Y Q, Shen L, et al.Nondestructively creating nanojunctions by combined-dynamic-mode dip-pen nanolithography[J].ChemPhysChem, 2009, 10(13):2226-2229.
    Guo S W.The creation of nanojunctions[J].Nanoscale, 2010, 2(12):2521-2529.
    Byon H R, Gallant B M, Lee S W, et al.Role of oxygen functional groups in carbon nanotube/graphene freestanding electrodes for high performance lithium batteries[J].Adv Funct Mater, 2013, 23(8):1037-1045.
    Tang C, Zhang Q, Zhao M Q, et al.Lithium-sulfur batteries:nitrogen-doped aligned carbon nanotube/graphene sandwiches:facile catalytic growth on bifunctional natural catalysts and their applications as scaffolds for high-rate lithium-sulfur batteries[J].Adv Mater, 2014, 26(35):6199-6199.
    Kwak W J, Lau K C, Shin C D, et al.A Mo2C/carbon nanotube composite cathode for lithium-oxygen batteries with high energy efficiency and long cycle life[J].ACS Nano, 2015, 9(4):4129-4137.
    Close G F, Yasuda S, Paul B, et al.A 1GH integrated circuit with carbon nanotube interconnects and silicon transistors[J].Nano Lett, 2008, 8(2):706-709.
    Subash S, Kolar J, Chowdhury M H.A new spatially rearranged bundle of mixed carbon nanotubes as VLSI interconnection[J].IEEE T Nanotechnol, 2013, 12(1):3-12.
    Jatinderpal J, Goel C, Singh Sandha K.Performance and analysis of voltage scaled repeaters for multi-walled carbon nanotubes as VLSI interconnects[J].I J Comput Appl, 2014, 93(8):18-23.
    Shulaker M M, Van Rethy J, Wu T F, et al.Carbon nanotube circuit integration up to sub-20 nm channel lengths[J].ACS Nano, 2014, 8(4):3434-3443.
    Kybert N J, Lerner M B, Yodh J S, et al.Differentiation of complex vapor mixtures using versatile DNA-carbon nanotube chemical sensor arrays[J].ACS Nano, 2013, 7(3):2800-2807.
    Ganzhorn M, Klyatskaya S, Ruben M, et al.Strong spin-phonon coupling between a single-molecule magnet and a carbon nanotube nanoelectromechanical system[J].Nat Nanotechnol, 2013, 8(3):165-169.
    Pei T, Zhang P P, Zhang Z Y, et al.Modularized construction of general integrated circuits on individual carbon nanotubes[J].Nano Lett, 2014, 14(6):3102-3109.
    Cao Q, Han S J, Tersoff J, et al.End-bonded contacts for carbon nanotube transistors with low, size-independent resistance[J].Science, 2015, 350(6256):68-72.
    Harik V.New Trends in Nanoscale Mechanics of Carbon Nanotubes[M]//Trends in Nanoscale Mechanics.Springer Netherlands, 2014:3-18.
  • 加载中
图(1)
计量
  • 文章访问数:  697
  • HTML全文浏览量:  99
  • PDF下载量:  1308
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-30
  • 录用日期:  2016-02-02
  • 修回日期:  2016-01-10
  • 刊出日期:  2016-01-28

目录

    /

    返回文章
    返回