留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高结晶度片状钛酸锂/石墨烯复合材料的可控制备及其电化学性能

董海勇 贺艳兵 李宝华 康飞宇

董海勇, 贺艳兵, 李宝华, 康飞宇. 高结晶度片状钛酸锂/石墨烯复合材料的可控制备及其电化学性能. 新型炭材料, 2016, 31(2): 115-120.
引用本文: 董海勇, 贺艳兵, 李宝华, 康飞宇. 高结晶度片状钛酸锂/石墨烯复合材料的可控制备及其电化学性能. 新型炭材料, 2016, 31(2): 115-120.
DONG Hai-yong, HE Yan-bing, LI Bao-hua, KANG Fei-yu. Controlled preparation and electrochemical performance of a flaky Li4Ti5O12-graphene hybrid with a high crystallinity. New Carbon Mater., 2016, 31(2): 115-120.
Citation: DONG Hai-yong, HE Yan-bing, LI Bao-hua, KANG Fei-yu. Controlled preparation and electrochemical performance of a flaky Li4Ti5O12-graphene hybrid with a high crystallinity. New Carbon Mater., 2016, 31(2): 115-120.

高结晶度片状钛酸锂/石墨烯复合材料的可控制备及其电化学性能

基金项目: 国家自然科学青年基金项目(51202121);深圳市基础研究计划(三大产业)重大培育项目(JC201104210152A).
详细信息
    作者简介:

    董海勇,硕士研究生.E-mail:donghaiyong2011@163.com

    通讯作者:

    贺艳兵,副研究员.E-mail:he.yanbing@sz.tsinghua.edu.cn

  • 中图分类号: TQ127.1+1

Controlled preparation and electrochemical performance of a flaky Li4Ti5O12-graphene hybrid with a high crystallinity

Funds: National Natural Science Foundation of China(51202121); Shenzhen Basic Research Project(JC201104210152A).
  • 摘要: 以氧化石墨烯为模板剂,N-甲基吡咯烷酮(NMP)为溶剂,通过溶剂热法制备高结晶度、片状结构钛酸锂/石墨烯复合电极材料(NMP-LTO/G)。与未添加氧化石墨烯的样品NMP-LTO相比,样品NMP-LTO/G的片状结构更好,结晶性与电化学性能明显提高。讨论氧化石墨烯作为模板剂的作用机理;基于双亲性结构特征和表面活性剂的特点,在复合材料制备过程中,氧化石墨烯与碱性条件、有机溶剂等产生协同作用,有利于高结晶度片状结构NMP-LTO/G复合材料形成。
  • Goodenough J B, Kim Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials, 2010, 22(3):587-603.
    Scrosati B, Garche J. Lithium batteries:status, prospects and future[J]. Journal of Power Sources, 2010, 195(9):2419-2430.
    Yi T-F, Jiang L-J, Shu J, et al. Recent development and application of Li4Ti5O12 as anode material of lithium ion battery[J]. Journal of Physics and Chemistry of Solids, 2010, 71(9):1236-1242.
    Jung H G, Myung S T, Yoon C S, et al. Microscale spherical carbon-coated Li4Ti5O12 as ultra high power anode material for lithium batteries[J]. Energy & Environmental Science, 2011, 4(4):1345-1351.
    Li B, Han C, He Y B, et al. Facile synthesis of Li4Ti5O12/C composite with super rate performance[J]. Energy & Environmental Science, 2012, 5(11):9595-9602.
    Kang E, Jung Y S, Kim G H, et al. Highly improved rate capability for a lithium-ion battery Nano-Li4Ti5O12 negative electrode via carbon-coated mesoporous uniform pores with a simple self-Assembly method[J]. Advanced Functional Materials, 2011, 21(22):4349-4357.
    Wang Y Q, Gu L, Guo Y G, et al. Rutile-TiO2 nanocoating for a high-rate Li4Ti5O12 anode of a lithium-ion battery[J]. Journal of the American Chemical Society, 2012, 134(18):7874-7879.
    Zhao L, Hu Y S, Li H, et al. Porous Li4Ti5O12 coated with N-Doped carbon from ionic liquids for Li-ion batteries[J]. Advanced Materials, 2011, 23(11):1385-1388.
    Li X, Qu M, Huai Y, et al. Preparation and electrochemical performance of Li4Ti5O12/carbon/carbon nano-tubes for lithium ion battery[J]. Electrochimica Acta, 2010, 55(8):2978-2982.
    Shi Y, Wen L, Li F, et al. Nanosized Li4Ti5O12/graphene hybrid materials with low polarization for high rate lithium ion batteries[J]. Journal of Power Sources, 2011, 196(20):8610-8617.
    Xiang H, Tian B, Lian P, et al. Sol-gel synthesis and electrochemical performance of Li4Ti5O12/graphene composite anode for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2011, 509(26):7205-7209.
    Kim H K, Bak S M, Kim K B. Li4Ti5O12/reduced graphite oxide nano-hybrid material for high rate lithium-ion batteries[J]. Electrochemistry Communications, 2010, 12(12):1768-1771.
    Shen L, Yuan C, Luo H, et al. In situ synthesis of high-loading Li4Ti5O12-graphene hybrid nanostructures for high rate lithium ion batteries[J]. Nanoscale, 2011, 3(2):572-574.
    Han S Y, Kim I Y, Jo K Y, et al. Solvothermal-assisted hybridization between reduced graphene oxide and lithium metal oxides:a facile route to graphene-based composite materials[J]. Journal of Physical Chemistry C, 2012, 116(13):7269-7279.
    Zhang Q, Peng W, Wang Z, et al. Synthesis and characterization of Li4Ti5O12/graphene composite as anode material with enhanced electrochemical performance[J]. Ionics, 2013, 19(5):717-723.
    Huang J, Jiang Z. The preparation and characterization of Li4Ti5O12/carbon nano-tubes for lithium ion battery[J]. Electrochimica Acta, 2008, 53(26):7756-7759.
    Ni H, Fan L Z. Nano-Li4Ti5O12 anchored on carbon nanotubes by liquid phase deposition as anode material for high rate lithium-ion batteries[J]. Journal of Power Sources, 2012, 214(0):195-199.
    Han C, He Y B, Li B, et al. Controlled preparation of N-doped carbon coated Li4Ti5O12 sheets with high crystallinity for high rate lithium ion battery[J]. Chemsuschem, 2014, 7(9):2567-2574.
    Shao J J, Wu S D, Zhang S B, et al. Graphene oxide hydrogel at solid/liquid interface[J]. Chemical Communications, 2011, 47(20):5771-5773.
    Viet H P, Tran V C, Hur S H, et al. Chemical functionalization of graphene sheets by solvothermal reduction of a graphene oxide suspension in N-methyl-2-pyrrolidone[J]. Journal of Materials Chemistry, 2011, 21(10):3371-3377.
    Hernandez Y, Nicolosi V, Lotya M, et al. High-yield production of graphene by liquid-phase exfoliation of graphite[J]. Nature Nanotechnology, 2008, 3(9):563-568.
    Lv W, Tang D M, He Y B, et al. Low-temperature exfoliated graphenes:vacuum-promoted exfoliation and electrochemical energy storage[J]. Acs Nano, 2009, 3(11):3730-3736.
    Li J, Tang Z, Zhang Z. Controllable formation and electrochemical properties of one-dimensional nanostructured spinel Li4Ti5O12[J]. Electrochemistry Communications, 2005, 7(9):894-899.
    Lin Y S, Tsai M C, Duh J G. Self-assembled synthesis of nanoflower-like Li4Ti5O12 for ultrahigh rate lithium-ion batteries[J]. Journal of Power Sources, 2012, 214(0):314-318.
    Chen J, Yang L, Fang S, et al. Synthesis of sawtooth-like Li4Ti5O12 nanosheets as anode materials for Li-ion batteries[J]. Electrochimica Acta, 2010, 55(22):6596-6600.
  • 加载中
计量
  • 文章访问数:  640
  • HTML全文浏览量:  94
  • PDF下载量:  809
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-02-12
  • 录用日期:  2016-04-21
  • 修回日期:  2016-04-01
  • 刊出日期:  2016-04-28

目录

    /

    返回文章
    返回