留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

原位聚合法与溶液混合法制备石墨烯/聚酰亚胺复合材料及其性能

马朗 王国建 戴进峰

马朗, 王国建, 戴进峰. 原位聚合法与溶液混合法制备石墨烯/聚酰亚胺复合材料及其性能. 新型炭材料, 2016, 31(2): 129-134.
引用本文: 马朗, 王国建, 戴进峰. 原位聚合法与溶液混合法制备石墨烯/聚酰亚胺复合材料及其性能. 新型炭材料, 2016, 31(2): 129-134.
MA Lang, WANG Guo-jian, DAI Jin-feng. Preparation and properties of reduced graphene oxide/polyimide composites produced by in-situ polymerization and solution blending methods. New Carbon Mater., 2016, 31(2): 129-134.
Citation: MA Lang, WANG Guo-jian, DAI Jin-feng. Preparation and properties of reduced graphene oxide/polyimide composites produced by in-situ polymerization and solution blending methods. New Carbon Mater., 2016, 31(2): 129-134.

原位聚合法与溶液混合法制备石墨烯/聚酰亚胺复合材料及其性能

详细信息
    作者简介:

    马朗,博士研究生.E-mail:07malang@tongji.edu.cn

    通讯作者:

    王国建,教授,博士.E-mail:wanggj@tongji.edu.cn

  • 中图分类号: TB333.2

Preparation and properties of reduced graphene oxide/polyimide composites produced by in-situ polymerization and solution blending methods

  • 摘要: 利用化学氧化还原法制备出石墨烯。通过原位聚合法及溶液混合法制备出石墨烯/聚酰亚胺复合材料,考察不同复合材料制备方法对其机械性能及导电性能的影响,并对其作用机理进行探讨。结果表明,制备的石墨烯为二维的单层或寡层材料,加入到聚酰亚胺中能够增强其机械性能及电导率。相比溶液混合法,采用原位聚合法时石墨烯在聚酰亚胺基体中分散更均匀,对其团聚作用有更好的抑制作用,制备的复合材料性能更优异。采用该法加入石墨烯的量为1.0 wt%时,拉伸强度达到了132.5 MPa,提高了68.8%;加入量增加到3.0 wt%时,电导率达6.87×10-4S·m-1,提高了8个数量级,对聚酰亚胺的性能有显著的增强作用。
  • Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696):666-669.
    Allen M J, Tung V C, Kaner R B. Honeycomb carbon:A review of graphene[J]. Chemical Reviews, 2010, 110(1):132-145.
    Yan L, Zheng B Y, Zhao F, et al. Chemistry and physics of a single atomic layer:Strategies and challenges for functionalization of graphene and graphene-based materials[J]. Chemical Society Reviews, 2012, 41(1):97-114.
    Layek R K, Nandi A K. A review on synthesis and properties of polymer functionalized graphene[J]. Polymer, 2013, 54(19):5087-5103.
    Lim J, Shin D G, Yeo H, et al. The mechanical and electrical properties of carbon nanotube-grafted polyimide nanocomposites[J]. Journal of Polymer Science Part B, 2014, 52(14):960-966.
    Li M K, Gao C X, Hu H L, et al. Electrical conductivity of thermally reduced graphene oxide/polymer composites with a segregated structure[J]. Carbon, 2013, 65:371-373.
    Stankovich S, Dikin D A, Dommett G H B, et al. Graphene based composites materials[J]. Nature, 2006, 442(7100):282-286.
    Du J H, Cheng H M. The fabrication, properties, and uses of graphene/polymer composites[J]. Macromolecular Chemistry and Physics, 2012, 213(10-11), 1060-1077.
    Rafiee M A, Rafiee J, Wang Z, et al. Enhanced mechanical properties of nanocomposites at low graphene content[J]. ACS Nano, 2009, 3(12):3884-3890.
    Varela-Ayan M, Paredes J I, Villar-Rodil S,et al. A quantitative analysis of the dispersion behavior of reduced graphene oxide in solvents[J]. Carbon, 2014, 75:390-400.
    Li Y F, Liu YZ, Zhang WK, et al. Green synthesis of reduced graphene oxide paper using Zn powder for supercapacitors[J]. Materials Letters, 2015,157:273-276.
    Fang M, Wang K G, Lu H B, et al. Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites[J]. Journal of Material Chemistry, 2009, 19(38):7098-8105.
    Kuila T, Khanra P, Misha A K, et al. Functionalized-graphene/ethylene vinyl acetate co-polymer composites for improved mechanical and thermal properties[J]. Polymer Testing, 2012, 31(2):282-289.
    Shen B, Zhai W T, Tao M M, et al. Chemical functionalization of graphene oxide toward the tailoring of the interface in polymer composites[J]. Composites Science and Technology, 2013, 77:87-94.
    Jang J, Pham V H, Rajagopalan B, et al. Effects of the alkylamine functionalization of graphene oxide on the properties of polystyrene nanocomposites[J]. Nanoscale Research Letters, 2014, 9(1):1-6.
    Li J H, Zhang G P, Deng L B, et al. In situ polymerization of mechanical reinforced, thermally healable graphene oxide/polyurethane composites based on Diels-Alder chemistry[J]. Journal of Materials Chemistry A, 2014, 2:20642-20649.
    Kim H, Kobayashi S, AbdurRahim M A, et al. Graphene/polyethylene nanocomposites:effect of polyethylene functionalization and blending methods[J]. Polymer, 2011, 52(8):1837-1846.
    Bao C L, Song L, Xing W Y, et al. Preparation of graphene by pressurized oxidation and multiplex reduction and its polymers nanocomposites by masterbatch-based melt blending[J]. Journal of Material Chemistry, 2012, 22:6088-6096.
    Hummers W S, Offeman R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80(6):1339-1339.
    Li D, Muller M B, Gilje S, et al. Processable aqueous dispersion of graphene nanosheets[J]. Nature Nanotechnology, 2008, 3(2):101-105.
    Vadukumpully S, Paul J, Mahanta N, et al. Flexible conductive graphene/poly(vinyl chloride) composite thin films with high mechanical strength and thermal stability[J]. Carbon, 2011, 49(1):198-205.
  • 加载中
计量
  • 文章访问数:  1333
  • HTML全文浏览量:  251
  • PDF下载量:  1423
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-10
  • 录用日期:  2016-04-21
  • 修回日期:  2016-03-28
  • 刊出日期:  2016-04-28

目录

    /

    返回文章
    返回