留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

棉纤维在亚临界水液中炭化形成炭微球

史晟 戴晋明 侯文生 张永芳 王淑花 陈旭红

史晟, 戴晋明, 侯文生, 张永芳, 王淑花, 陈旭红. 棉纤维在亚临界水液中炭化形成炭微球. 新型炭材料, 2016, 31(2): 144-150.
引用本文: 史晟, 戴晋明, 侯文生, 张永芳, 王淑花, 陈旭红. 棉纤维在亚临界水液中炭化形成炭微球. 新型炭材料, 2016, 31(2): 144-150.
SHI Sheng, DAI Jin-ming, HOU Wen-sheng, ZHANG Yong-fang, WANG Shu-hua, CHEN Xu-hong. Carbon microspheres formed by the carbonization of cotton fibers in subcritical water. New Carbon Mater., 2016, 31(2): 144-150.
Citation: SHI Sheng, DAI Jin-ming, HOU Wen-sheng, ZHANG Yong-fang, WANG Shu-hua, CHEN Xu-hong. Carbon microspheres formed by the carbonization of cotton fibers in subcritical water. New Carbon Mater., 2016, 31(2): 144-150.

棉纤维在亚临界水液中炭化形成炭微球

基金项目: 国家自然科学基金青年基金(51302183);国家自然科学基金(51443005);山西省回国留学人员科研资助项目(2012-044);山西省自然科学基金(2012021021-6);太原理工大学青年基金(2012L027).
详细信息
    作者简介:

    史晟,博士研究生.E-mail:shisheng3100@126.com

    通讯作者:

    戴晋明,教授.E-mail:tgmydjm@163.com

  • 中图分类号: TQ127.1+1

Carbon microspheres formed by the carbonization of cotton fibers in subcritical water

Funds: Youth Foundation of NSFC(51302183); NSFC(51443005); Shanxi Sponsored Research Program for Overseas Returnee(2012-044); NSF of Shanxi Province(2012021021-6); Youth Foundation of Taiyuan University of Technology(2012L027).
  • 摘要: 为了寻找一种废旧棉纤维的高效再利用方法,从棉纤维的化学结构着手,结合亚临界水的特殊性质,采用水热法使棉纤维炭化生成附加值较高的炭微球。探讨棉纤维在亚临界水中炭化成球的最优条件,并分析棉纤维炭化的反应过程及水热产物的表面物理结构和微观化学组成。结果表明,棉纤维在280℃,10 h,20 g/L条件下,炭微球的形貌最佳,含碳量达到74.99%,粒径为0.8~3μm。水热产物主要以无定形碳结构形式存在,且含有大量的芳香环结构和脂肪族基团,具有较强的亲水性,表面C/O质量比高于水热产物平均C/O质量比。棉纤维的炭化主要是经水解,裂解,聚合、凝结、芳香化、胶体作用而形成。
  • Shaka S, Ueno T. Chemical conversion of various celluloses to glucose and its derivatives in supercritical water[J]. Cellulose, 1999, 6(3):177-191.
    富玉,宋瑞娟,姚娜,等.亚临界水-火焰离子化检测-柱后分流色谱分离某些醇、酚和羧酸类化合物[J]. 分析化学, 2007, 35(9):1335-1338.(FU Yu, SONG Rui-Juan, YAO Na, et al. Separation of some alcohols, phenols and carboxylic acids by coupling of subcritical water chromatography and flame ionization detection with post-column splitting[J]. Analytical Chemistry, 2007, 35(9):1335-1338.)
    Yang R Z, Qiu X P, Zhang H R, et al. Monodispersed hard carbon spherules as a catalyst Support for the electrooxidation of methanol[J]. Carbon, 2005, 43(1):11-16.
    Wang Q, Li H, Chen L, et al. Monodispersed hard carbon spherules with uniform nanopores[J]. Carbon, 2001, 39(14):2211-2214.
    Ryua J, Suha Y W, Suha D J, et al. Hydrothermal preparation of carbon microspheres from mono-saccharides and phenolic compounds[J]. Carbon, 2010, 48(7):1990-198.
    Titirici M M, Thomas A, Antonietti M. Back in the black:hydrothermal carbonization of plant material as an efficient chemical process to treat the CO2 problem[J]. New Journal of Chemistry, 2007, 31(6):787-789.
    Kang S, Li X, Fan J. Characterization of hydrochars produced by hydrothermal carbonization of lignin, cellulose, D-xylose, and wood meal[J]. Industrial and Engineering Chemistry Research, 2012, 51(26):9023-9031.
    Sevilla M, Fuertes A B. Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides[J]. Chemistry-A European Journal, 2009, 15(16):4195-4203.
    Sun X, Li Y. Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles[J]. Angewandte Chemie International Edition, 2004, 43(5):597-601.
    Lua A C, Yang T. Effect of activation temperature on the textural and chemical properties of potassium hydroxide activated carbon prepared from pistachio-nut shell[J].Colloid Interface Sci, 2004, 274(2):594-601.
    Wu D, Fu R, Yu Z. Organic and carbon aerogels from the NaOH-catalyzed polycondensation of resorcinol-furfural and supercritical drying in ethanol[J]. Appl Polym Sci, 2005, 96(4):1429-1435.
    Araujo-Andrade C, Ruiz F, Mart'nez-Mendoza J R, et al. Infrared and Raman spectra, conformational stability, abinitio calculations of structure, and vibrational assignment of α and β glucose[J]. J Mol Struct:THEOCHEM, 2005, 714(2-3):143-146.
    Valery N K, Merlyn X P. Chernical modification of carbon nanotubes[J]. Mendeleev Commun, 2006, 16(2):61-66.
    刘世宏, 王当憨. X射线光电子能谱分析[M]. 北京:科学出版社,1988.(LIU Shi-hong, WANG Dang-han. X-ray Photoelectron Spectroscopy Analysis[M]. Beijing:science press,1988.)
    Baccile N, Laurent G, Babonneau F, et al. Structural characterization of hydrothermal carbon spheres by advanced solid-state MAS13C NMR investigations[J]. Phys Chem C, 2009, 113(22):9644-9654.
    Falco C, Baccile N, Titirici M M. Morphological and structural differences between glucose, cellulose and lignocellulosic biomass derived hydrothermal carbons[J]. Green Chem, 2011, 13(11):3273-3281.
    Ogihara Y, Smith Jr RL, Inomata H, et al. Direct observation of cellulose dissolution in subcritical and supercritical water over a wide range of water densities(550-1000 kg/m3)[J]. Cellulose, 2005, 12(6):595-606.
    Sasaki M, Fang Z, Fukushima Y, et al. Dissolution and hydrolysis of cellulose in subcritical andsupercritical water[J]. Ind Eng Chem Res, 2000, 39(8):2883-2890.
    Aida T M, Sato Y, Watanabe M, et al. Dehydration of D-glucose in high temperature water at pressures up to 80 MPa[J]. Supercrit Fluids, 2007, 40(3):381-388.
    Asghari F S, Yoshida H. Acid-catalyzed production of 5-hydroxymethyl furfural from D-fructose in subcritical water[J]. Ind Eng Chem Res, 2006, 45(7):2163-2173.
  • 加载中
计量
  • 文章访问数:  615
  • HTML全文浏览量:  71
  • PDF下载量:  599
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-30
  • 录用日期:  2016-04-21
  • 修回日期:  2016-03-20
  • 刊出日期:  2016-04-28

目录

    /

    返回文章
    返回