留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TiB2/ZrB2-C自生复合材料涂层的制备与表征

杨金华 刘占军 王立勇 郭全贵 宋进仁 刘朗

杨金华, 刘占军, 王立勇, 郭全贵, 宋进仁, 刘朗. TiB2/ZrB2-C自生复合材料涂层的制备与表征. 新型炭材料, 2016, 31(2): 188-198.
引用本文: 杨金华, 刘占军, 王立勇, 郭全贵, 宋进仁, 刘朗. TiB2/ZrB2-C自生复合材料涂层的制备与表征. 新型炭材料, 2016, 31(2): 188-198.
YANG Jin-hua, LIU Zhan-jun, WANG Li-yong, GUO Quan-gui, SONG Jin-ren, LIU Lang. Preparation and characterization of a TiB2/ZrB2-C eutectic coating. New Carbon Mater., 2016, 31(2): 188-198.
Citation: YANG Jin-hua, LIU Zhan-jun, WANG Li-yong, GUO Quan-gui, SONG Jin-ren, LIU Lang. Preparation and characterization of a TiB2/ZrB2-C eutectic coating. New Carbon Mater., 2016, 31(2): 188-198.

TiB2/ZrB2-C自生复合材料涂层的制备与表征

详细信息
    作者简介:

    杨金华,博士.E-mail:jhyang@sxicc.ac.cn

    通讯作者:

    郭全贵,博士,研究员.E-mail:qgguo@sxicc.ac.cn;刘占军,博士,研究员.E-mail:zjliu03@sxicc.ac.cn

  • 中图分类号: TB332

Preparation and characterization of a TiB2/ZrB2-C eutectic coating

  • 摘要: 通过加热TiB2及ZrB2粉末与等静压炭块至共熔点以上的方法制备出新型炭/陶复合材料涂层TIB、ZRB-1与ZRB-2。结果表明,所制自生复合材料涂层的表层与内部结构明显不同,表层由B掺杂的高度有序石墨构成,内部由TiB2-C或ZrB2-ZrC-C合金组成。TIB、ZRB-1与ZRB-2涂层中石墨的d002值分别为0.3359、0.3360与0.3354 nm,接近或等于单晶石墨的d002值(0.3354 nm),表明高度有序石墨结构的形成。3种涂层内部石墨的拉曼光谱中D峰、D'峰明显,2D峰强度低及G峰向高波数偏移,这些特征是由石墨碳网格结构中B掺杂所致。此外,ZrB2粒径小有利于涂层表层应力的释放。
  • Fahrenholtz W G, Hilmas G E, Talmy I G, et al. Refractory diborides of zirconium and hafnium[J]. Journal of the American Ceramic Society, 2007, 90(5):1347-1364.
    Zhao D, Zhang C, Hu H, et al. Ablation behavior and mechanism of 3D C/ZrC composite in oxyacetylene torch environment[J]. Composites Science and Technology, 2011, 71(11):1392-1396.
    Tong Q F, Shi J L, Song Y Z, et al. Resistance to ablation of pitch-derived ZrC/C composites[J]. Carbon, 2004, 42(12-13):2495-2500.
    Wang Y, Zhu X, Zhang L, et al. Reaction kinetics and ablation properties of C/C-ZrC composites fabricated by reactive melt infiltration[J]. Ceramics International, 2011, 37(4):1277-1283.
    Shen X T, Li K Z, Li H J, et al. Microstructure and ablation properties of zirconium carbide doped carbon/carbon composites[J]. Carbon, 2010, 48(2):344-351.
    Tang S F, Deng J Y, Wang S J, et al. Ablation behaviors of ultra-high temperature ceramic composites[J]. Mater Sci Eng A-Struct Mater Prop Microstruct Process, 2007, 465(1-2):1-7.
    Corral E L, Walker L S. Improved ablation resistance of C-C composites using zirconium diboride and boron carbide[J]. Journal of the European Ceramic Society, 2010, 30(11):2357-2364.
    Li X, Shi J, Zhang G, et al. Effect of ZrB2 on the ablation properties of carbon composites[J]. Materials Letters, 2006, 60(7):892-896.
    Xie J, Li K, Li H, et al. Ablation behavior and mechanism of C/C-ZrC-SiC composites under an oxyacetylene torch at 3000℃[J]. Ceramics International, 2012, 39(4):4171-4178.
    Li H B, Zhang L T, Cheng L F, et al. Ablation resistance of different coating structures for C/ZrB2-SiC composites under oxyacetylene torch flame[J]. International Journal of Applied Ceramic Technology, 2009, 6(2):145-150.
    Zhou C. The effect of additives and processing conditions on properties of sintered mesocarbon microbeads[D]. University of Notre Dame, 2007.
    Iwashita N, Park C R, Fujimoto H, et al. Specification for a standard procedure of X-ray diffraction measurements on carbon materials[J]. Carbon, 2004, 42(4):701-714.
    Amini S, Abbaschian R. Synthesis of curved graphene layers on metallic dendrites[J]. Materials Letters, 2012, 88:129-131.
    Munro R G. Material properties of titanium diboride[J]. Journal of Research of the National Institute of Standards and Technology, 2000, 105(5):709-720.
    Mounet N, Marzari N. First-principles determination of the structural, vibrational and thermodynamic properties of diamond, graphite, and derivatives[J]. Physical Review B, 2005, 71(20):205214.
    Amini S, Garay J, Liu G, et al. Growth of large-area graphene films from metal-carbon melts[J]. Journal of Applied Physics, 2010,108(9):094321.
    Lorca J, Orera V. Directionally solidified eutectic ceramic oxides[J]. Progress in Materials Science, 2006, 51(6):711-809.
    Wang H, Guo Q, Yang J, et al. Microstructural evolution and oxidation resistance of polyacrylonitrile-based carbon fibers doped with boron by the decomposition of B4C[J]. Carbon, 2013, 56:296-308.
    Endo M, Kim Y A, Takeda T, et al. Structural characterization of carbon nanofibers obtained by hydrocarbon pyrolysis[J]. Carbon, 2001, 39(13):2003-2010.
    Yang J, Liu Z, Wang H, et al. The reaction behavior of carbon fibers and TaC at high temperatures[J]. CrystEngComm, 2013, 15(35):6928-6931.
  • 加载中
计量
  • 文章访问数:  542
  • HTML全文浏览量:  84
  • PDF下载量:  295
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-02-03
  • 录用日期:  2016-04-21
  • 修回日期:  2016-04-01
  • 刊出日期:  2016-04-28

目录

    /

    返回文章
    返回