留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维碳质材料的制备和应用

汤艳萍 徐庆 唐睿智 张帆

汤艳萍, 徐庆, 唐睿智, 张帆. 二维碳质材料的制备和应用. 新型炭材料, 2016, 31(3): 213-231.
引用本文: 汤艳萍, 徐庆, 唐睿智, 张帆. 二维碳质材料的制备和应用. 新型炭材料, 2016, 31(3): 213-231.
TANG Yan-ping, XU Qing, TANG Rui-zhi, ZHANG Fan. Preparation and applications of two dimensional carbon materials. New Carbon Mater., 2016, 31(3): 213-231.
Citation: TANG Yan-ping, XU Qing, TANG Rui-zhi, ZHANG Fan. Preparation and applications of two dimensional carbon materials. New Carbon Mater., 2016, 31(3): 213-231.

二维碳质材料的制备和应用

详细信息
    通讯作者:

    张帆,研究员.E-mail:fan-zhang@sjtu.edu.cn

  • 中图分类号: TQ127.1+1

Preparation and applications of two dimensional carbon materials

  • 摘要: 二维碳质材料具有碳质材料来源广泛、化学稳定性高、电学性质可调控等优点,而且二维构型的表面效应、小尺寸效应等使其具有特殊的光、电、热、力学和几何性能。本文对石墨烯及其衍生物、多孔炭片、炭布材料等二维碳质材料的制备进行了综述,并且概述了二维碳质材料在污染物吸附、检测和传感、锂离子电池、电容器、催化等领域中的应用,讨论了其发展中的挑战和展望。
  • Dai L, Xue Y, Qu L, et al. Metal-free catalysts for oxygen reduction reaction[J]. Chemical Reviews, 2015, 115(11): 4823-4892.
    Dai L, Chang D W, Baek J B, et al. Carbon nanomaterials for advanced energy conversion and storage[J]. Small, 2012, 8(8): 1130-1166.
    Novoselov K S, Geim A K, Morozov S, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
    Duan J, Chen S, Jaroniec M, et al. Heteroatom-doped graphene-based materials for energy-relevant electrocatalytic processes[J]. ACS Catalysis, 2015, 5(9): 5207-5234.
    Han S, Wu D, Li S, et al. Porous graphene materials for advanced electrochemical energy storage and conversion devices[J]. Advanced Materials, 2014, 26(6): 849-864.
    Chen D, Feng H, Li J. Graphene oxide: Preparation, functionalization, and electrochemical applications[J]. Chemical reviews, 2012, 112(11): 6027-6053.
    Allen M J, Tung V C, Kaner R B. Honeycomb carbon: A review of graphene[J]. Chemical Reviews, 2009, 110(1): 132-145.
    LIANG Wei-dong, ZHANG Guo-dong, LIU Ye, et al. Polydimethylsiloxane-modified super hydrophobic porous graphene filled with palmitic acid as a phase change energy storage material[J]. New Carbon Materials, 2015, 30(5): 4660470.
    Tung V C, Allen M J, Yang Y, et al. High-throughput solution processing of large-scale graphene[J]. Nature Nanotechnology, 2009, 4(1): 25-29.
    Paredes J, Villar-Rodil S, Martinez-Alonso A, et al. Graphene oxide dispersions in organic solvents[J]. Langmuir, 2008, 24(19): 10560-10564.
    Kong X K, Chen C L, Chen Q W. Doped graphene for metal-free catalysis[J]. Chemical Society Reviews, 2014, 43(8): 2841-2857.
    Zhuang X, Zhang F, Wu D, et al. Graphene coupled schiff-base porous polymers: Towards nitrogen-enriched porous carbon nanosheets with ultrahigh electrochemical capacity[J]. Advanced Materials, 2014, 26(19): 3081-3086.
    Wei W, Liang H, Parvez K, et al. Nitrogen-doped carbon nanosheets with size-defined mesopores as highly efficient metal-free catalyst for the oxygen reduction reaction[J]. Angewandte Chemie, 2014, 126(6): 1596-1600.
    Yu J S, Kang S, Yoon S B, et al. Fabrication of ordered uniform porous carbon networks and their application to a catalyst supporter[J]. Journal of the American Chemical Society, 2002, 124(32): 9382-9383.
    Yuan J, Márquez A G, Reinacher J, et al. Nitrogen-doped carbon fibers and membranes by carbonization of electrospun poly(ionic liquid)[J]. Polymer Chemistry, 2011, 2(8): 1654-1657.
    Hernandez Y, Nicolosi V, Lotya M, et al. High-yield production of graphene by liquid-phase exfoliation of graphite[J]. Nature Nanotechnology, 2008, 3(9): 563-568.
    Parvez K, Wu Z-S, Li R, et al. Exfoliation of graphite into graphene in aqueous solutions of inorganic salts[J]. Journal of the American Chemical Society, 2014, 136(16): 6083-6091.
    Hummers Jr W S, Offeman R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80(6): 1339-1339.
    Compton O C, Nguyen S T. Graphene oxide, highly reduced graphene oxide, and graphene: Versatile building blocks for carbon-based materials[J]. Small, 2010, 6(6): 711-723.
    El-Kady M F, Strong V, Dubin S, et al. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors[J]. Science, 2012, 335(6074): 1326-1330.
    Chabot V, Higgins D, Yu A, et al. A review of graphene and graphene oxide sponge: Material synthesis and applications to energy and the environment[J]. Energy & Environmental Science, 2014, 7(5): 1564-1596.
    Zhu Y, Murali S, Stoller M D, et al. Carbon-based supercapacitors produced by activation of graphene[J]. Science, 2011, 332(6037): 1537-1541.
    Fan Z, Zhao Q, Li T, et al. Easy synthesis of porous graphene nanosheets and their use in supercapacitors[J]. Carbon, 2012, 50(4): 1699-1703.
    Liu S, Peng W, Sun H, et al. Physical and chemical activation of reduced graphene oxide for enhanced adsorption and catalytic oxidation[J]. Nanoscale, 2014, 6(2): 766-771.
    Sui Z Y, Meng Q H, Li J T, et al. High surface area porous carbons produced by steam activation of graphene aerogels[J]. Journal of Materials Chemistry A, 2014, 2(25): 9891-9898.
    Choubak S, Levesque P L, Gaufres E, et al. Graphene CVD: Interplay between growth and etching on morphology and stacking by hydrogen and oxidizing impurities[J]. The Journal of Physical Chemistry C, 2014, 118(37): 21532-21540.
    Zhang Y, Zhang L, Zhou C. Review of chemical vapor deposition of graphene and related applications[J]. Accounts of chemical research, 2013, 46(10): 2329-2339.
    Bi H, Sun S, Huang F, et al. Direct growth of few-layer graphene films on SiO2 substrates and their photovoltaic applications[J]. Journal of Materials Chemistry, 2012, 22(2): 411-416.
    Cai M, Outlaw R A, Butler S M, et al. A high density of vertically-oriented graphenes for use in electric double layer capacitors[J]. Carbon, 2012, 50(15): 5481-5488.
    Zhao M Q, Zhang Q, Huang J Q, et al. Unstacked double-layer templated graphene for high-rate lithium-sulphur batteries[J]. Nature Communications, 2014, 5, 3410.
    Gong K, Du F, Xia Z, et al. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction[J]. Science, 2009, 323(5915): 760-764.
    Kyotani T, Nagai T, Inoue S, et al. Formation of new type of porous carbon by carbonization in zeolite nanochannels[J]. Chemistry of Materials, 1997, 9(2): 609-615.
    Zhuang X, Zhang F, Wu D, et al. Two-dimensional sandwich-type, graphene-based conjugated microporous polymers[J]. Angewandte Chemie International Edition, 2013, 52(37): 9668-9672.
    Zhuang X, Gehrig D, Forler N, et al. Conjugated microporous polymers with dimensionality-controlled heterostructures for green energy devices[J]. Advanced Materials, 2015, 27(25): 3789-3796.
    Jin Z Y, Lu A H, Xu Y Y, et al. Ionic Liquid-assisted synthesis of microporous carbon nanosheets for use in high rate and long cycle life supercapacitors[J]. Advanced Materials, 2014, 26(22): 3700-3705.
    Wei J, Hu Y, Liang Y, et al. Nitrogen-doped nanoporous carbon/graphene nano-sandwiches: Synthesis and application for efficient oxygen reduction[J]. Advanced Functional Materials, 2015, 25(36): 5768-5777.
    Fan X, Yu C, Yang J, et al. A layered-nanospace-confinement strategy for the synthesis of two-dimensional porous carbon nanosheets for high-rate performance supercapacitors[J]. Advanced Energy Materials, 2015, 5(7).
    Gong J, Michalkiewicz B, Chen X, et al. Sustainable conversion of mixed plastics into porous carbon nanosheets with high performances in uptake of carbon dioxide and storage of hydrogen[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(12): 2837-2844.
    Chen L, Wang Z, He C, et al. Porous graphitic carbon nanosheets as a high-rate anode material for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2013, 5(19): 9537-9545.
    Shen W, Hu T, Fan W. Cellulose generated-microporous carbon nanosheets with nitrogen doping[J]. RSC Advances, 2014, 4(18): 9126-9132.
    Wang H, Zhao T, Wei X, et al. Easy preparation of carbon sheets with controlled microstructures from sucrose/layered superabsorbent polymer hydrogels[J]. Carbon, 2011, 49(2): 357-363.
    Zakhidov A A, Baughman R H, Iqbal Z, et al. Carbon structures with three-dimensional periodicity at optical wavelengths[J]. Science, 1998, 282(5390): 897-901.
    Baumann T F, Satcher J H. Homogeneous incorporation of metal nanoparticles into ordered macroporous carbons[J]. Chemistry of Materials, 2003, 15(20): 3745-3747.
    Moriguchi I, Ozono A, Mikuriya K, et al. Micelle-templated mesophases of phenol-formaldehyde polymer[J]. Chemistry Letters, 1999, (11): 1171-1172.
    Bockstaller M R, Thomas E L. Proximity effects in self-organized binary particle-block copolymer blends[J]. Physical Review Letters, 2004, 93(16): 166106.
    WANG Yong, KONG Ling-bin, LI Xiao-ming, et al. Mesoporous carbons for supercapacitors obtainedby the pyrolysis of block copolymers[J]. New Carbon Materials, 2015, 30(4): 302-309.
    Morkved T, Lu M, Urbas A, et al. Local control of microdomain orientation in diblock copolymer thin films with electric fields[J]. Science, 1996, 273(5277): 931.
    Kowalewski T, Tsarevsky N V, Matyjaszewski K. Nanostructured carbon arrays from block copolymers of polyacrylonitrile[J]. Journal of the American Chemical Society, 2002, 124(36): 10632-10633.
    Sidorenko A, Tokarev I, Minko S, et al. Ordered reactive nanomembranes/nanotemplates from thin films of block copolymer supramolecular assembly[J]. Journal of the American Chemical Society, 2003, 125(40): 12211-12216.
    Liang C, Hong K, Guiochon G A, et al. Synthesis of a large-scale highly ordered porous carbon film by self-assembly of block copolymers[J]. Angewandte Chemie International Edition, 2004, 43(43): 5785-5789.
    Meng Y, Gu D, Zhang F, et al. A family of highly ordered mesoporous polymer resin and carbon structures from organic-organic self-assembly[J]. Chemistry of Materials, 2006, 18(18): 4447-4464.
    Meng Y, Gu D, Zhang F, et al. Ordered mesoporous polymers and homologous carbon frameworks: amphiphilic surfactant templating and direct transformation[J]. Angewandte Chemie, 2005, 117(43): 7215-7221.
    Lee S H, Kim H W, Hwang J O, et al. Three-dimensional self-assembly of graphene oxide platelets into mechanically flexible macroporous carbon films[J]. Angewandte Chemie, 2010, 122(52): 10282-10286.
    Fang Y, Lv Y, Che R, et al. Two-dimensional mesoporous carbon nanosheets and their derived graphene nanosheets: synthesis and efficient lithium ion storage[J]. Journal of the American Chemical Society, 2013, 135(4): 1524-1530.
    Deng Y, Liu C, Yu T, et al. Facile synthesis of hierarchically porous carbons from dual colloidal crystal/block copolymer template approach[J]. Chemistry of Materials, 2007, 19(13): 3271-3277.
    Zhang W, Cui J, Tao C A, et al. A Strategy for Producing Pure Single-Layer Graphene Sheets Based on a Confined Self-Assembly Approach[J]. Angewandte Chemie, 2009, 121(32): 5978-5982.
    Yun Y S, Park M H, Hong S J, et al. Hierarchically porous carbon nanosheets from waste coffee grounds for supercapacitors[J]. ACS Applied Materials & Interfaces, 2015, 7(6): 3684-3690.
    Sevilla M, Fuertes A B. Direct synthesis of highly porous interconnected carbon nanosheets and their application as high-performance supercapacitors[J]. ACS Nano, 2014, 8(5): 5069-5078.
    Wang Y, Jiang X. Facile preparation of porous carbon nanosheets without template and their excellent electrocatalytic property[J]. ACS Applied Materials & Interfaces, 2013, 5(22): 11597-11602.
    Song R, Song H, Zhou J, et al. Hierarchical porous carbon nanosheets and their favorable high-rate performance in lithium ion batteries[J]. Journal of Materials Chemistry, 2012, 22(24): 12369-12374.
    Xu Z, Zhuang X, Yang C, et al. Nitrogen-doped porous carbon superstructures derived from hierarchical assembly of polyimide nanosheets[J]. Advanced Materials, 2016.
    Long C, Chen X, Jiang L, et al. Porous layer-stacking carbon derived from in-built template in biomass for high volumetric performance supercapacitors[J]. Nano Energy, 2015, 12: 141-151.
    Yun Y S, Cho S Y, Shim J, et al. Microporous carbon nanoplates from regenerated silk proteins for supercapacitors[J]. Advanced Materials, 2013, 25(14): 1993-1998.
    Wang H, Xu Z, Kohandehghan A, et al. Interconnected carbon nanosheets derived from hemp for ultrafast supercapacitors with high energy[J]. ACS Nano, 2013, 7(6): 5131-5141.
    Ding J, Wang H, Li Z, et al. Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes[J]. ACS Nano, 2013, 7(12): 11004-11015.
    Sun L, Tian C, Li M, et al. From coconut shell to porous graphene-like nanosheets for high-power supercapacitors[J]. Journal of Materials Chemistry A, 2013, 1(21): 6462-6470.
    Wang L, Mu G, Tian C, et al. Porous graphitic carbon nanosheets derived from cornstalk biomass for advanced supercapacitors[J]. ChemSusChem, 2013, 6(5): 880-889.
    Chen P, Wang L-K, Wang G, et al. Nitrogen-doped nanoporous carbon nanosheets derived from plant biomass: an efficient catalyst for oxygen reduction reaction[J]. Energy & Environmental Science, 2014, 7(12): 4095-4103.
    Pan F, Cao Z, Zhao Q, et al. Nitrogen-doped porous carbon nanosheets made from biomass as highly active electrocatalyst for oxygen reduction reaction[J]. Journal of Power Sources, 2014, 272: 8-15.
    Jin H, Wang X, Gu Z, et al. Carbon materials from high ash biochar for supercapacitor and improvement of capacitance with HNO3 surface oxidation[J]. Journal of Power Sources, 2013, 236: 285-292.
    Tian W, Gao Q, Tan Y, et al. Bio-inspired beehive-like hierarchical nanoporous carbon derived from bamboo-based industrial by-product as a high performance supercapacitor electrode material[J]. Journal of Materials Chemistry A, 2015, 3(10): 5656-5664.
    Genovese M, Jiang J, Lian K, et al. High capacitive performance of exfoliated biochar nanosheets from biomass waste corn cob[J]. Journal of Materials Chemistry A, 2015, 3(6): 2903-2913.
    Fan Z, Qi D, Xiao Y, et al. One-step synthesis of biomass-derived porous carbon foam for high performance supercapacitors[J]. Materials Letters, 2013, 101: 29-32.
    Liu Q, Duan Y, Zhao Q, et al. Direct synthesis of nitrogen-doped carbon nanosheets with high surface area and excellent oxygen reduction performance[J]. Langmuir, 2014, 30(27): 8238-8245.
    Cavaliere S, Subianto S, Savych I, et al. Electrospinning: designed architectures for energy conversion and storage devices[J]. Energy & Environmental Science, 2011, 4(12): 4761-4785.
    Chen S, Hou H, Harnisch F, et al. Electrospun and solution blown three-dimensional carbon fiber nonwovens for application as electrodes in microbial fuel cells[J]. Energy & Environmental Science, 2011, 4(4): 1417-1421.
    Rajzer I, Kwiatkowski R, Piekarczyk W, et al. Carbon nanofibers produced from modified electrospun PAN/hydroxyapatite precursors as scaffolds for bone tissue engineering[J]. Materials Science and Engineering: C, 2012, 32(8): 2562-2569.
    Peng H. Aligned carbon nanotube/polymer composite films with robust flexibility, high transparency, and excellent conductivity[J]. Journal of the American Chemical Society, 2008, 130(1): 42-43.
    Cheng X, Fang X, Chen P, et al. Designing one-dimensional supercapacitors in a strip shape for high performance energy storage fabrics[J]. Journal of Materials Chemistry A, 2015, 3(38): 19304-19309.
    Zhang Y, Zhuang X, Su Y, et al. Polyaniline nanosheet derived B/N co-doped carbon nanosheets as efficient metal-free catalysts for oxygen reduction reaction[J]. Journal of Materials Chemistry A, 2014, 2(21): 7742-7746.
    Zhang J T, Jin Z Y, Li W C, et al. Graphene modified carbon nanosheets for electrochemical detection of Pb (Ⅱ) in water[J]. Journal of Materials Chemistry A, 2013, 1(42): 13139-13145.
    Yin H, Zhou Y, Meng X, et al. One-step "green" preparation of graphene nanosheets and carbon nanospheres mixture by electrolyzing graphite rob and its application for glucose biosensing[J]. Biosensors and Bioelectronics, 2011, 30(1): 112-117.
    Wang X P, Wang L J, Liu X F, et al. The synthesis of vertically oriented carbon nanosheet-carbon nanotube hybrid films and their excellent field emission properties[J]. Carbon, 2013, 58: 170-174.
    Li X, Hu Y, Liu J, et al. Structurally tailored graphene nanosheets as lithium ion battery anodes: an insight to yield exceptionally high lithium storage performance[J]. Nanoscale, 2013, 5(24): 12607-12615.
    Hassoun J, Bonaccorso F, Agostini M, et al. An advanced lithium-ion battery based on a graphene anode and a lithium iron phosphate cathode[J]. Nano Letters, 2014, 14(8): 4901-4906.
    Lian P, Zhu X, Liang S, et al. Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries[J]. Electrochimica Acta, 2010, 55(12): 3909-3914.
    Fan Z, Yan J, Ning G, et al. Porous graphene networks as high performance anode materials for lithium ion batteries[J]. Carbon, 2013, 60: 558-561.
    Mukherjee R, Thomas A V, Datta D, et al. Defect-induced plating of lithium metal within porous graphene networks[J]. Nature communiCations, 2014, 5.
    Wang X, Weng Q, Liu X, et al. Atomistic origins of high rate capability and capacity of N-doped graphene for lithium storage[J]. Nano Letters, 2014, 14(3): 1164-1171.
    Li Z, Xu Z, Tan X, et al. Mesoporous nitrogen-rich carbons derived from protein for ultra-high capacity battery anodes and supercapacitors[J]. Energy & Environmental Science, 2013, 6(3): 871-878.
    Wu Z S, Ren W, Xu L, et al. Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries[J]. ACS Nano, 2011, 5(7): 5463-5471.
    Hu T, Sun X, Sun H, et al. Rapid synthesis of nitrogen-doped graphene for a lithium ion battery anode with excellent rate performance and super-long cyclic stability[J]. Physical Chemistry Chemical Physics, 2014, 16(3): 1060-1066.
    Yang X, Cheng C, Wang Y, et al. Liquid-mediated dense integration of graphene materials for compact capacitive energy storage[J]. Science, 2013, 341(6145): 534-537.
    Bo Z, Zhu W, Ma W, et al. Vertically oriented graphene bridging active-layer/current-collector interface for ultrahigh rate supercapacitors[J]. Advanced Materials, 2013, 25(40): 5799-5806.
    Wen Z, Wang X, Mao S, et al. Crumpled nitrogen-doped graphene nanosheets with ultrahigh pore volume for high-performance supercapacitor[J]. Advanced Materials, 2012, 24(41): 5610-5616.
    Wang Q, Yan J, Wei T, et al. Two-dimensional mesoporous carbon sheet-like framework material for high-rate supercapacitors[J]. Carbon, 2013, 60: 481-487.
    Lai L, Potts J R, Zhan D, et al. Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction[J]. Energy & Environmental Science, 2012, 5(7): 7936-7942.
    Jeon I Y, Zhang S, Zhang L, et al. Edge-selectively sulfurized graphene nanoplatelets as efficient metal-free electrocatalysts for oxygen reduction reaction: the electron spin effect[J]. Advanced Materials, 2013, 25(42): 6138-6145.
    Liang J, Jiao Y, Jaroniec M, et al. Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance[J]. Angewandte Chemie International Edition, 2012, 51(46): 11496-11500.
    Li R, Wei Z, Gou X. Nitrogen and phosphorus dual-doped graphene/carbon nanosheets as bifunctional electrocatalysts for oxygen reduction and evolution[J]. ACS Catalysis, 2015, 5(7): 4133-4142.
    Hou S, Cai X, Wu H, et al. Nitrogen-doped graphene for dye-sensitized solar cells and the role of nitrogen states in triiodide reduction[J]. Energy & Environmental Science, 2013, 6(11): 3356-3362.
    Kannan A G, Zhao J, Jo S G, et al. Nitrogen and sulfur co-doped graphene counter electrodes with synergistically enhanced performance for dye-sensitized solar cells[J]. Journal of Materials Chemistry A, 2014, 2(31): 12232-12239.
  • 加载中
图(1)
计量
  • 文章访问数:  821
  • HTML全文浏览量:  180
  • PDF下载量:  1930
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-07
  • 录用日期:  2016-06-28
  • 修回日期:  2016-06-02
  • 刊出日期:  2016-06-28

目录

    /

    返回文章
    返回