留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于微孔有机聚合物的多孔炭合成

王科伟 谭必恩

王科伟, 谭必恩. 基于微孔有机聚合物的多孔炭合成. 新型炭材料, 2016, 31(3): 232-242.
引用本文: 王科伟, 谭必恩. 基于微孔有机聚合物的多孔炭合成. 新型炭材料, 2016, 31(3): 232-242.
Wang Ke-wei, Tan Bi-en. Synthesis of porous carbons from microporous organic polymers. New Carbon Mater., 2016, 31(3): 232-242.
Citation: Wang Ke-wei, Tan Bi-en. Synthesis of porous carbons from microporous organic polymers. New Carbon Mater., 2016, 31(3): 232-242.

基于微孔有机聚合物的多孔炭合成

基金项目: 国家自然科学基金(21474033,51273074,51173058);新世纪优秀人才计划(NCET-10-0389).
详细信息
    作者简介:

    王科伟.E-mail:wangkewei2006@163.com

    通讯作者:

    谭必恩,教授.E-mail:bien.tan@mail.hust.edu.cn

  • 中图分类号: TB383

Synthesis of porous carbons from microporous organic polymers

Funds: National Natural Science Foundation of China (21474033, 51273074, 51173058);New Century Talents Scheme (NCET-10-0389).
  • 摘要: 近年来,多孔炭材料因比表面积高、孔结构丰富、化学稳定性高以及导电性好等优点已成为化学、生物以及材料等领域的研究热点,被广泛应用于催化、药物负载与缓释和电化学等方面。微孔有机聚合物(Micropore organic polymers, MOPs)作为一种近年来发展迅猛的新型多孔材料,具有合成方法多样性、化学和物理性质稳定、孔结构可调、较高的比表面积以及表面易修饰等特性,较传统多孔材料(如沸石,硅胶等)具有更好的应用前景。同时,MOPs材料的热稳定性好,高温炭化可得到孔结构可调的多孔炭材料,这进一步拓展了MOPs材料的应用。本文综述了MOPs作为前驱体,利用煅烧制备多孔材料的方法及其应用,并对MOPs对多孔炭的理性设计进行了展望。
  • Ben T, Li Y, Zhu L, et al. Selective adsorption of carbon dioxide by carbonized porous aromatic framework (PAF)[J]. Energ Environ Sci, 2012, 5(8): 8370-8376.
    Mai W, Sun B, Chen L, et al. Water-dispersible, responsive, and carbonizable hairy microporous polymeric nanospheres[J]. J Am Chem Soc, 2015, 137(41): 13256-13259.
    Zhang W, Wu Z Y, Jiang H L, et al. Nanowire-directed templating synthesis of metal-organic framework nanofibers and their derived porous doped carbon nanofibers for enhanced electrocatalysis[J]. J Am Chem Soc, 2014, 136(41): 14385-14388.
    Vijayan B K, Dimitrijevic N M, Finkelstein-Shapiro D, et al. Coupling Titania nanotubes and carbon nanotubes to create photocatalytic nanocomposites[J]. ACS Catal, 2012, 2(2): 223-229.
    Lin T, Chen I, Liu F, et al. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage[J]. Science, 2015, 350 (6267): 1508-1513.
    Sing K S W, Everett D H, Haul R A W, et al. Reporting physisorption date for gas/solid systems[J]. Pure & Appl Chem, 1985, 57(4): 603-619.
    Li Y, Shi J. Hollow-structured mesoporous materials: Chemical synthesis, functionalization and applications[J]. Adv Mater, 2014, 26(20): 3176-3205.
    Li Z, Wu D, Liang Y, et al. Synthesis of well-defined microporous carbons by molecular-scale templating with polyhedral oligomeric silsesquioxane moieties[J]. J Am Chem Soc, 2014, 136(13): 4805-4808.
    Zou C, Wu D, Li M, et al. Template-free fabrication of hierarchical porous carbon by constructing carbonyl crosslinking bridges between polystyrene chains[J]. J Mater Chem, 2010, 20(4): 731-735.
    Wang K, Huang L, Razzaque S, et al. Fbrication of microporous carbon spheres from hypercrosslinked microporous polymers[J]. Small, 2016, 12(23): 3134-3142.
    Ouyang Y, Shi H, Fu R, et al. Highly monodisperse microporous polymeric and carbonaceous nanospheres with multifunctional properties[J]. Sci Rep, 2013, 3: 1430.
    McKeown N B, Makhseed S, Budd P M. Phthalocyanine-based nanoporous network polymers[J]. Chem Commun, 2002: 2780-2781.
    McKeown N B, Hanif S, Msayib K, et al. Porphyrin-based nanoporous network polymers[J]. Chem Commun, 2002: 2782-2783.
    Tsyurupa M P, Davankov V A. H ypercrosslinked polymers: basic principle of preparing the new class of polymeric materials[J]. React Funct Polym, 2002, 53: 193-293.
    Xu S, Luo Y, Tan B. Recent development of hypercrosslinked microporous organic polymers[J]. Macromol Rapid Commun, 2013, 34(6): 471-484.
    Li B, Gong R, Wang W, et al. A New Strategy to Microporous Polymers: Knitting Rigid Aromatic Building Blocks by External Cross-Linker[J]. Macromolecules, 2011, 44(8): 2410-2414.
    Wood C D, Tan B, Trewin A, et al. Hydrogen storage in microporous hypercrosslinked organic polymer networks[J]. Chem Mater, 2007, 19(8): 2034-2048.
    Jiang J X, Su F, Trewin A, et al. Conjugated microporous poly(aryleneethynylene) networks[J]. Angew Chem Int Ed, 2007, 46(45): 8574-8578.
    Jiang J X, Su F, Trewin A, et al. Synthetic control of the pore dimension and surface area in conjugated microporous polymer and copolymer networks[J]. J Am Chem Soc, 2008, 130(24): 7710-7720.
    Xu Y, Jin S, Xu H, et al. Conjugated microporous polymers: Design, synthesis and application[J]. Chem Soc Rev, 2013, 42(20): 8012-8031.
    Côté A P, Benin A I, Ockwig N W, et al. Porous, crystalline, covalent organic frameworks[J]. Science, 2005, 310 (5751): 1166-1170.
    Feng X, Ding X, Jiang D. Covalent organic frameworks[J]. Chem Soc Rev, 2012, 41(18): 6010-6022.
    Ding S Y, Wang W. Covalent organic frameworks (COFs): From design to applications[J]. Chem Soc Rev, 2013, 42(2): 548-568.
    Cooper A I. Conjugated microporous polymers[J]. Adv Mater, 2009, 21(12): 1291-1295.
    Wang X, Maeda K, Thomas A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nat Mater, 2009, 8: 76-80.
    Liu X, Zhou L, Zhao Y, et al. Hollow, spherical nitrogen-rich porous carbon shells obtained from a porous organic framework for the supercapacitor[J]. ACS Appl Mater Inter, 2013, 5(20): 10280-10287.
    Ben T, Ren H, Ma S, et al. Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area[J]. Angew Chem Int Ed, 2009, 48(50): 9457-9460.
    Zhang K, Kopetzki D, Seeberger P H, et al. Surface area control and photocatalytic activity of conjugated microporous poly(benzothiadiazole) networks[J]. Angew Chem Int Ed, 2013, 52(5): 1432-1436.
    Xu Y, Chen L, Guo Z, et al. Light-emitting conjugated polymers with microporous network architecture: interweaving scaffold promotes electronic conjugation, facilitates exciton migration, and improves luminescence[J]. J Am Chem Soc, 2011, 133(44): 17622-17625.
    Reuter K, Scheffler M. Composition, structure, and stability of RuO2 (110) as a function of oxygen pressure[J]. Pys Rev B, 2001, 65(3): 035406 (1-11).
    Feng X, Liang Y, Zhi L, et al. Synthesis of microporous carbon nanofibers and nanotubes from conjugated polymer network and evaluation in electrochemical capacitor[J]. Adv Funct Mater, 2009, 19(13): 2125-2129.
    Liang Y, Feng X, Zhi L, et al. A simple approach towards one-dimensional mesoporous carbon with superior electrochemical capacitive activity[J]. Chem Commun, 2009: 809-811.
    Bao Q, Bao S, Li C, et al. Supercapacitance of solid carbon nanofibers made from ethanol flames[J]. J Phys Chem C, 2008, 112(10): 3612-3618.
    Li Y, Roy S, Ben T, et al. Micropore engineering of carbonized porous aromatic framework (PAF-1) for supercapacitors application[J]. Phys Chem Chem Phys, 2014, 16(25): 12909-12917.
    Li Y, Ben T, Zhang B, et al. Ultrahigh gas storage both at low and high pressures in KOH-activated carbonized porous aromatic frameworks[J]. Sci Rep, 2013, 3: 2420.
    Zhang Y, Li B, Williams K, et al. A new microporous carbon material synthesized via thermolysis of a porous aromatic framework embedded with an extra carbon source for low-pressure CO2 uptake[J]. Chem Commun, 2013, 49(87): 10269-10271.
    Tan W, Zhang Y. Multifunctional quantum-dot-based magnetic chittosan nanobeads[J]. Adv Mater, 2005, 17(19): 2375-2380.
    Raymundo-Piñero E, Leroux F, Béguin F. A high-performance carbon for supercapacitors obtained by carbonization of a seaweed biopolymer[J]. Adv Mater, 2006, 18(14): 1877-1882.
    Xiang Z, Xue Y, Cao D, et al. Highly efficient electrocatalysts for oxygen reduction based on 2D covalent organic polymers complexed with non-precious metals[J]. Angew Chem Int Ed, 2014, 53(9): 2433-2437.
    Wu Z S, Chen L, Liu J, et al. High-performance electrocatalysts for oxygen reduction derived from cobalt porphyrin-based conjugated mesoporous polymers[J]. Adv Mater, 2014, 26(9): 1450-1455.
    Lin Q, Bu X, Kong A, et al. Heterometal-embedded organic conjugate frameworks from alternating monomeric iron and cobalt metalloporphyrins and their application in design of porous carbon catalysts[J]. Adv Mater, 2015, 27(22): 3431-3436.
    Kitagawa S, Kitaura R, Noro S. Functional porous coordination polymers[J]. Angew Chem Int Ed, 2004, 43(18): 2334-2375.
    Yaghi O M, O' Keefe M, Ockwing N W, et al. Reticular synthesis and the design of new materials[J]. Nature, 2003, 423: 705-714.
    Eddaoudi M, Kim J, Rosi N, et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage[J]. Science, 2002, 295(5554): 469-472.
    Davankov V A, Rogozhin S V, Tsyurupa M P. US 3729457, 1971. [Chem Abstr, 1971, 75,6841].
    Jiang J, Copoper A. Functional Metal-Organic Frameworks: Gas Storage, Separation and Catalysis [M]. Springer, 2010, 293.
    Tsyurupa M P, Davankov V A. Porous structure of hypercrosslinked polystyrene: State-of-the-art mini-review[J]. React Funct Polym, 2006, 66(7): 768-779.
    Zeng Q, Wu D, Zou C, et al. Template-free fabrication of hierarchical porous carbon based on intra-/inter-sphere crosslinking of monodisperse styrene-divinylbenzene copolymer nanospheres[J]. Chem Commun, 2010, 46(32): 5927-5929.
    Xu F, Cai R, Zeng Q, et al. Fast ion transport and high capacitance of polystyrene-based hierarchical porous carbon electrode material for supercapacitors[J]. J Mater Chem, 2011, 21(6): 1970-1976.
    Zhong H, Xu F, Li Z, et al. High-energy supercapacitors based on hierarchical porous carbon with an ultrahigh ion-accessible surface area in ionic liquid electrolytes[J]. Nanoscale, 2013, 5(11): 4678-4682.
    Chen J, Lang Z, Xu Q, et al. Facile preparation of monodisperse carbon spheres: Template-free construction and their hydrogen storage properties[J]. ACS Sustain Chem Eng, 2013, 1(8): 1063-1068.
    Song K, Liu P, Wang J, et al. Controlled synthesis of uniform palladium nanoparticles on novel micro-porous carbon as a recyclable heterogeneous catalyst for the Heck reaction[J]. Dalton Trans, 2015, 44(31): 13906-13913.
    Gasteiger H A, Kocha S S, Sompalli B, et al. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs[J]. Appl Catal B-Environ, 2005, 56(1-2): 9-35.
    Feng Y, Alonso-Vante N. Nonprecious metal catalysts for the molecular oxygen-reduction reaction[J]. phys status solidi B, 2008, 245(9): 1792-1806.
    Song K, Zou Z, Wang D, et al. Microporous organic polymers derived microporous carbon supported Pd catalysts for oxygen reduction reaction: Impact of framework and heteroatom[J]. J Phys Chem C, 2016, 120(4): 2187-2197.
    Li Z, Wu D, Liang Y, et al. Facile fabrication of novel highly microporous carbons with superior size-selective adsorption and supercapacitance properties[J]. Nanoscale, 2013, 5(22): 10824-10828.
    Liang Y, Liang F, Zhong H, et al. An advanced carbonaceous porous network for high-performance organic electrolyte supercapacitors[J]. J Mater Chem A, 2013, 1(24): 7000-7005.
    Modak A, Bhaumik A. Porous carbon derived via KOH activation of a hypercrosslinked porous organic polymer for efficient CO2, CH4, H2 adsorptions and high CO2/N2 selectivity[J]. J Solid State Chem, 2015, 232: 157-162.
  • 加载中
图(1)
计量
  • 文章访问数:  796
  • HTML全文浏览量:  160
  • PDF下载量:  1112
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-02
  • 录用日期:  2016-06-28
  • 修回日期:  2016-06-03
  • 刊出日期:  2016-06-28

目录

    /

    返回文章
    返回