留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多孔碳质材料在氧还原电催化中的应用

杨慧聪 梁骥 王振兴 安百钢 李峰

杨慧聪, 梁骥, 王振兴, 安百钢, 李峰. 多孔碳质材料在氧还原电催化中的应用. 新型炭材料, 2016, 31(3): 243-263.
引用本文: 杨慧聪, 梁骥, 王振兴, 安百钢, 李峰. 多孔碳质材料在氧还原电催化中的应用. 新型炭材料, 2016, 31(3): 243-263.
YANG Hui-cong, LIANG Ji, WANG Zhen-xing, AN Bai-gang, LI Feng. Applications of porous carbon materials in the electrocatalysis of the oxygen reduction reaction. New Carbon Mater., 2016, 31(3): 243-263.
Citation: YANG Hui-cong, LIANG Ji, WANG Zhen-xing, AN Bai-gang, LI Feng. Applications of porous carbon materials in the electrocatalysis of the oxygen reduction reaction. New Carbon Mater., 2016, 31(3): 243-263.

多孔碳质材料在氧还原电催化中的应用

基金项目: 沈阳材料科学国家(联合)实验室葛庭燧奖研金项目;中国博士后基金(2015M571342);科技部国家重大科技研究计划(2014CB932402);国家自然科学基金(51221264,51525206,51172239,51372253,U14012436);中国科学院战略性科技先导专项(XDA01020304);中国科学院重点部署项目(KGZD-EW-T06).
详细信息
    作者简介:

    杨慧聪,硕士研究生.E-mail:hcyang14s@imr.ac.cn

    通讯作者:

    李峰,研究员.E-mail:fli@imr.ac.cn

  • 中图分类号: TQ127.1+1

Applications of porous carbon materials in the electrocatalysis of the oxygen reduction reaction

Funds: T. S. Kě Research Fellowship Program of Shenyang National Laboratory for Materials Science;China Postdoctoral Science Foundation (2015M571342);Ministry of Science and Technology of China (2014CB932402);National Natural Science Foundation of China (51221264, 51525206, 51172239, 51372253, U14012436);"Strategic Priority Research Program" of the Chinese Academy of Sciences (XDA01020304);Key Research Program of Chinese Academy of Sciences (KGZD-EW-T06).
  • 摘要: 氧气的电化学还原(氧还原)反应是多种能量存储与转化装置中的关键电化学步骤,氧还原的难易程度决定了这些装置综合性能的好坏。氧还原反应自身的动力学过程缓慢,通常需要催化剂来提高反应速率。碳质材料在其中发挥着非常重要的作用,常见氧还原催化剂铂、钯等贵金属及近期出现的多种非贵金属,大多是负载于各种纳米碳质材料或直接利用掺杂纳米碳质材料作为催化剂,包括各种多孔炭或基于多孔炭的材料。因此,多孔碳质材料的发展对于氧还原催化剂的研究与发展起到了促进作用。本文从多孔碳质材料制备手段出发,论述了多孔碳质材料在氧还原反应的作用,涵盖了贵金属催化剂载体到非(贵)金属催化剂等方面的研究进展。与此同时,对新型碳质材料调控多孔结构的方法加以阐述,并对未来新型多孔碳质材料用于氧还原催化剂的前景和方向进行了展望。
  • Markovi? N M, Ad?i? R R, Cahan B D, et al. Structural effects in electrocatalysis: Oxygen reduction on platinum low index single-crystal surfaces in perchloric acid solutions[J]. Journal of Electroanalytical Chemistry, 1994, 377(1-2): 249-259.
    Wang D W, Su D S. Heterogeneous nanocarbon materials for oxygen reduction reaction[J]. Energy & Environmental Science, 2014, 7(2): 576-591.
    Wu K H, Wang D W, Su D S, et al. A discussion on the activity origin in metal-free nitrogen-doped carbons for oxygen reduction reaction and their mechanisms[J]. ChemSusChem, 2015, 8(17): 2772-2788.
    Zhu Y, Zhang B, Wang D W, et al. Order of activity of nitrogen, iron oxide, and fenx complexes towards oxygen reduction in alkaline medium[J]. ChemSusChem, 2015, 8(23): 4016-4021.
    Wu K H, Zeng Q, Zhang B, et al. Structural origin of the activity in Mn3O4-graphene oxide hybrid electrocatalysts for the oxygen reduction reaction[J]. ChemSusChem, 2015. 8(19): 3331-3339.
    Zhang Y, Chen C, Peng L, et al. Carboxyl groups trigger the activity of carbon nanotube catalysts for the oxygen reduction reaction and agar conversion[J]. Nano Research, 2015, 8(2): 502-511.
    Sun X, Xu J, Ding Y, et al. The effect of different phosphorus chemical states on an onion-like carbon surface for the oxygen reduction reaction[J]. ChemSusChem, 2015, 8(17): 2872-2876.
    Zhu Y, Lin Y, Zhang B, et al. Nitrogen-doped annealed nanodiamonds with varied sp2/sp3 ratio as metal-free electrocatalyst for the oxygen reduction reaction[J]. Chemcatchem, 2015, 7(18): 2840-2845.
    Zhong X, Liu L, Jiang Y, et al. Synergistic effect of nitrogen in cobalt nitride and nitrogen-doped hollow carbon spheres for the oxygen reduction reaction[J]. ChemCatChem, 2015, 7(12): 1826-1832.
    Liang C, Ding L, Li C, et al. Nanostructured WCx/CNTs as highly efficient support of electrocatalysts with low Pt loading for oxygen reduction reaction[J]. Energy & Environmental Science, 2010, 3(8): 1121-1127.
    Dillon R, Srinivasan S, Aric A S, et al. International activities in DMFC R&D: status of technologies and potential applications[J]. Journal of Power Sources, 2004, 127(1-2): 112-126.
    Costamagna P, Srinivasan S. Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000: Part I. Fundamental scientific aspects[J]. Journal of Power Sources, 2001, 102(1-2): 242-252.
    Steele B C H, Heinzel A. Materials for fuel-cell technologies[J]. Nature, 2001, 414(6861): 345-352.
    Wang J, Zhang Y, Guo L, et al. Identifying reactive sites and transport limitations of oxygen reactions in aprotic lithium-o batteries at the stage of sudden death[J]. Angew Chem Int Ed Engl, 2016, 128: 1-6.
    Peng Z, Freunberger S A, Chen Y, et al. A reversible and higher-rate Li-O2 battery[J]. Science, 2012, 337(6094): 563-566.
    Girishkumar G, McCloskey B, Luntz A C, et al. Lithium-air battery: Promise and challenges[J]. The Journal of Physical Chemistry Letters, 2010, 1(14): 2193-2203.
    Li Z, Wu D, Huang X, et al. Fabrication of novel polymeric and carbonaceous nanoscale networks by the union of self-assembly and hypercrosslinking[J]. Energy & Environmental Science, 2014, 7(9): 3006-3012.
    Cai L, Chen L, Liang Y, et al. Reactive-template induced in-situ hypercrosslinking procedure to hierarchical porous polymer and carbon materials[J]. Acta Chimica Sinica, 2015, 73(6): 600-604.
    Li W, Zhou J, Xing W, et al. Preparation of microporous carbon using a zeolite hy template and its capacitive performance[J]. Acta Physico-Chimica Sinica, 2011, 27(3): 620-626.
    Su F B, Zhao X S, Lv L, et al. Synthesis and characterization of microporous carbons templated by ammonium-form zeolite Y[J]. Carbon, 2004, 42(14): 2821-2831.
    Adeniran, Beatrice, Masika, et al. A family of microporous carbons prepared via a simple metal salt carbonization route with high selectivity for exceptional gravimetric and volumetric post-combustion CO2 capture[J]. Journal of Materials Chemistry A, 2014, 2(35): 14696-14710.
    Yongde X, Yanqiu Z, Yi T. Preparation of sulfur-doped microporous carbons for the storage of hydrogen and carbon dioxide[J]. Carbon, 2012, 50(15): 5543-5553.
    Ouyang Y, Shi H, Fu R, et al. Highly monodisperse microporous polymeric and carbonaceous nanospheres with multifunctional properties[J]. Scientific Reports, 2013, 3(3): 4422-4427.
    Li Z, Wu D, Liang Y, et al. Synthesis of well-defined microporous carbons by molecular-scale templating with polyhedral oligomeric silsesquioxane moieties[J]. Journal of the American Chemical Society, 2014, 136(13): 4805-4808.
    Kyotani T, Nagai T, Inoue S, et al. Formation of new type of porous carbon by carbonization in zeolite nanochannels[J]. Chemistry of Materials, 1997, 9(2): 609-615.
    Ma Z, Kyotani T, Tomita A. Preparation of a high surface area microporous carbon having the structural regularity of Y zeolite[J]. Chemical Communications, 2000(23): 2365-2366.
    Li Z, Yuan L, Yi Z, et al. Insight into the electrode mechanism in lithium-sulfur batteries with ordered microporous carbon confined sulfur as the cathode[J]. Advanced Energy Materials, 2014, 4(1301473): 1-8.
    Liang Y, Fu R, Wu D. Reactive template-induced self-assembly to ordered mesoporous polymeric and carbonaceous materials[J]. ACS Nano, 2013, 7(2): 1748-1754.
    Zhang C, Wang J T, Li X, et al. Facile preparation, structural control and spheroidization of mesoporous carbons using hydrolyzed water glass as a template[J]. Journal of Inorganic Materials, 2015, 30(8): 848-854.
    Choma J, Jedynak K, Fahrenholz W. Microporosity development in phenolic resin-based mesoporous carbons for enhancing CO2 adsorption at ambient conditions[J]. Applied Surface Science, 2014, 289: 592-600.
    Liang J, Jingwang Y, Rong X, et al. Partially graphitized ordered mesoporous carbons for high-rate supercapacitors[J]. Journal of Solid State Electrochemistry, 2014, 18(8): 2175-82.
    Sakintuna B, Yurum Y. Preparation and characterization of mesoporous carbons using a Turkish natural zeolitic template/furfuryl alcohol system[J]. Microporous and Mesoporous Materials, 2006, 93(1-3): 304-312.
    Xin W, Song Y. Mesoporous carbons: Recent advances in synthesis and typical applications[J]. RSC Advances, 2015, 5(101): 83239-83285.
    Ting C C, Wu H Y, Vetrivel S, et al. A one-pot route to synthesize highly ordered mesoporous carbons and silicas through organic-inorganic self-assembly of triblock copolymer, sucrose and silica[J]. Microporous and Mesoporous Materials, 2010, 128(1-3): 1-11.
    SONG Huai-he, LI Li-xia, CHEN Xiao-hong. The synthesis of ordered mesoporous carbons via a template method[J]. New Carbon Materials, 2006, 21(4): 374-383. (宋怀河, 李丽霞, 陈晓红. 有序介孔炭的模板合成进展[J]. New Carbon Materials, 2006, 21(4): 374-383.)
    Dinari M, Mohammadnezhad G, Nabiyan A. Preparation and characterization of nanocomposite materials based on polyamide-6 and modified ordered mesoporous silica KIT-6[J]. Journal of Applied Polymer Science, 2016, 133(10): 43098.
    Khabazipour M, Shariati S, Safa F. SBA and KIT-6 mesoporous silica magnetite nanoparticles: synthesis and characterization[J]. Synthesis and Reactivity in Inorganic Metal-Organic and Nano-Metal Chemistry, 2016, 46(5): 759-765.
    Jun S, Joo S H, Ryoo R, et al. Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure[J]. Journal of the American Chemical Society, 2000, 122(43): 10712-10713.
    Ryoo R, Joo S H, Kruk M, et al. Ordered mesoporous carbons[J]. Advanced Materials, 2001, 13(9): 677-681.
    Meng Y, Gu D, Zhang F, et al. Ordered mesoporous polymers and homologous carbon frameworks: amphiphilic surfactant templating and direct transformation[J]. Angewandte Chemie, 2005, 117(43): 7215-7221.
    Fang Y, Gu D, Zou Y, et al. A low-concentration hydrothermal synthesis of biocompatible ordered mesoporous carbon nanospheres with tunable and uniform size[J]. Angewandte Chemie International Edition, 2010, 49(43): 7987-7991.
    Fang Y, Lv Y, Che R, et al. Two-dimensional mesoporous carbon nanosheets and their derived graphene nanosheets: Synthesis and efficient lithium ion storage[J]. Journal of the American Chemical Society, 2013, 135(4): 1524-1530.
    CAI Li-feng, CHEN Lu-yi, WANG Chun-li, et al. Liquid-phase methylene blue adsorption of a novel hierarchical porous carbon aerogel[J]. New Carbon Materials, 2015, 30(6): 560-565. (蔡力峰, 陈鹭义, 王春丽. 新型层次孔炭气凝胶的液相吸附性能[J]. New Carbon Materials, 2015, 30(6): 560-565.)
    Liang J, Zheng Y, Chen J, et al. Facile oxygen reduction on a three-dimensionally ordered macroporous graphitic C3N4/carbon composite electrocatalyst[J]. Angewandte Chemie International Edition, 2012, 51(16): 3892-3896.
    Liang Y, Wu D, Fu R. Carbon microfibers with hierarchical porous structure from electrospun fiber-like natural biopolymer[J]. Scientific Reports, 2013, 3(1119): 1-5.
    TANG Zhi-wei, XU Fei, LIANG Ye-ru, et al. Preparation and electrochemical performance of a hierarchically porous activated carbon aerogel/sulfur cathode for lithium-sulfur batteries[J]. New Carbon Materials, 2015, 30(4): 319-326. (唐志伟, 徐 飞, 梁业如. 层次孔活性炭气凝胶/硫复合正极材料的制备及其电化学性能[J]. New Carbon Materials, 2015, 30(4): 319-326.)
    Xia Y, Li Y, Gu Y, et al. Adsorption desulfurization by hierarchical porous organic polymer of poly-methylbenzene with metal impregnation[J]. Fuel, 2016, 170: 100-106.
    Li H, Yuan D, Tang C, et al. Lignin-derived interconnected hierarchical porous carbon monolith with large areal/volumetric capacitances for supercapacitor[J]. Carbon, 2016, 100: 151-157.
    Liu D, Jia Z, Wang D. Preparation of hierarchically porous carbon nanosheet composites with graphene conductive scaffolds for supercapacitors: An electrostatic-assistant fabrication strategy[J]. Carbon, 2016, 100: 664-677.
    Liang J, Du X, Gibson C, et al. N-doped graphene natively grown on hierarchical ordered porous carbon for enhanced oxygen reduction[J]. Advanced Materials, 2013, 25(43): 6226-6231.
    Wang K, Wang Y, Wang Y, et al. Mesoporous carbon nanofibers for supercapacitor application[J]. Journal of Physical Chemistry C, 2009, 113(3): 1093-1097.
    Liu H J, Wang X M, Cui W J, et al. Highly ordered mesoporous carbon nanofiber arrays from a crab shell biological template and its application in supercapacitors and fuel cells[J]. Journal of Materials Chemistry, 2010. 20(20): 4223-4230.
    Liu H J, Cui W J, Jin L H, et al. Preparation of three-dimensional ordered mesoporous carbon sphere arrays by a two-step templating route and their application for supercapacitors[J]. Journal of Materials Chemistry, 2009. 19(22): 3661-3667.
    Liang J, Jiao Y, Jaroniec M, et al. Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance[J]. Angewandte Chemie International Edition, 2012, 51(46): 11496-11500.
    Choi B G, Yang M, Hong W H, et al. 3D macroporous graphene frameworks for supercapacitors with high energy and power densities[J]. ACS Nano, 2012, 6(5): 4020-4028.
    Worsley M A, Pauzauskie P J, Olson T Y, et al. Synthesis of graphene aerogel with high electrical conductivity[J]. Journal of the American Chemical Society, 2010, 132(40): 14067-14610.
    Zhang M, Gao B, Cao X, et al. Synthesis of a multifunctional graphene-carbon nanotube aerogel and its strong adsorption of lead from aqueous solution[J]. RSC Advances, 2013, 3(43): 21099-21105.
    Maiti U N, Lee W J, Lee J M, et al. Chemically modified/doped carbon nanotubes & graphene for optimized nanostructures & nanodevices[J]. Advanced Materials, 2014, 26(1): 40-67.
    Liang Y, Wang H, Diao P, et al. Oxygen reduction electrocatalyst based on strongly coupled cobalt oxide nanocrystals and carbon nanotubes[J]. Journal of the American Chemical Society, 2012, 134(38): 15849-15857.
    Li X H, Kurasch S, Kaiser U, et al. Synthesis of monolayer-patched graphene from glucose[J]. Angewandte Chemie International Edition, 2012, 51(38): 9689-9692.
    Zheng Y, Jiao Y, Ge L, et al. Two-step boron and nitrogen doping in graphene for enhanced synergistic catalysis[J]. Angewandte Chemie International Edition, 2013, 52(11): 3110-3116.
    Yang D S, Park J, Bhattacharjya D, et al. Phosphorus-doped ordered mesoporous carbons with different lengths as efficient metal-free electrocatalysts for oxygen reduction reaction in alkaline media[J]. Journal of the American Chemical Society, 2012: 1-5.
    Zhang C, Mahmood N, Yin H, et al. Synthesis of phosphorus-doped graphene and its multifunctional applications for oxygen reduction reaction and lithium ion batteries[J]. Advanced Materials, 2013, 25(35): 4932-4937.
    Zhu C, Li H, Fu S, et al. Highly efficient nonprecious metal catalysts towards oxygen reduction reaction based on three-dimensional porous carbon nanostructures[J]. Chemical Society Reviews, 2016, 45(3): 517-531.
    Zhang P, Zhu H, and Dai S. Porous carbon supports: Recent advances with various morphologies and compositions[J]. ChemCatChem, 2015, 7(18): 2788-2805.
    Yang S, Zhi L, Tang K, et al. Efficient synthesis of heteroatom (n or s)-doped graphene based on ultrathin graphene oxide-porous silica sheets for oxygen reduction reactions[J]. Advanced Functional Materials, 2012, 22(17): 3634-3640.
    Jafri R I, Rajalakshmi N, Ramaprabhu S. Nitrogen doped graphene nanoplatelets as catalyst support for oxygen reduction reaction in proton exchange membrane fuel cell[J]. Journal of Materials Chemistry, 2010, 20(34): 7114-7117.
    Liu G, Li X, Ganesan P, et al. Development of non-precious metal oxygen-reduction catalysts for PEM fuel cells based on N-doped ordered porous carbon[J]. Applied Catalysis B-Environmental, 2009, 93(1-2): 156-165.
    Cheon J Y, Ahn C, You D J, et al. Ordered mesoporous carbon-carbon nanotube nanocomposites as highly conductive and durable cathode catalyst supports for polymer electrolyte fuel cells[J]. Journal of Material Chemistry A, 2013, 1(4): 1270-1283.
    Joo S H, Choi S J, Oh I, et al. Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles[J]. Nature, 2001, 412(12): 169-172.
    Song K, Zou Z, Wang D, et al. Microporous organic polymers derived microporous carbon supported pd catalysts for oxygen reduction reaction: impact of framework and heteroatom[J]. The Journal of Physical Chemistry C, 2016, 120(4): 2187-2197.
    Cheon J Y, Kim T, Choi Y, et al. Ordered mesoporous porphyrinic carbons with very high electrocatalytic activity for the oxygen reduction reaction[J]. Scientific Reports, 2013, 3(9): 2715-2715.
    Liang H W, Wei W, Wu Z S, et al. Mesoporous metal-nitrogen-doped carbon electrocatalysts for highly efficient oxygen reduction reaction[J]. Journal of the American Chemical Society, 2013, 135(43): 16002-16005.
    Tan Y, Xu C, Chen G, et al. Facile synthesis of manganese-oxide-containing mesoporous nitrogen-doped carbon for efficient oxygen reduction[J]. Advanced Functional Materials, 2012, 22(21): 4584-4591.
    Edwards R S, Coleman K S. Graphene synthesis: relationship to applications[J]. Nanoscale, 2013, 5(1): 38-51.
    Zhu Y, Murali S, Cai W, et al. Graphene and graphene oxide: Synthesis, properties, and applications[J]. Advanced Materials, 2010, 22(35): 3906-3924.
    Novoselov K S, Geim A K, Morozov S, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
    Wang G, Wang B, Park J, et al. Highly efficient and large-scale synthesis of graphene by electrolytic exfoliation[J]. Carbon, 2009, 47(14): 3242-3246.
    Blake Peter, Brimicombe P D. Graphene-based liquid crystal device[J]. Nano Letters, 2008, 8(6): 1704-1708.
    Hernandez Y, Nicolosi V, Lotya M, et al. High-yield production of graphene by liquid-phase exfoliation of graphite[J]. Nature Nanotechnology, 2008, 3(9): 563-568.
    Park S, Ruoff R S. Chemical methods for the production of graphenes[J]. Nature Nanotechnology, 2009, 4(4): 217-224.
    Schniepp H C, Li J L, McAllister M J, et al. functionalized single graphene sheets derived from splitting graphite oxide[J]. The Journal of Physical Chemistry B, 2006, 110(17): 8535-8539.
    Li X, Cai W, An J, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils[J]. Science, 2009, 324(5932): 1312-1314.
    Chen Z, Ren W, Gao L, et al. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition[J]. Nature Materials, 2011, 10(6): 424-428.
    Kou R, Shao Y, Wang D, et al. Enhanced activity and stability of Pt catalysts on functionalized graphene sheets for electrocatalytic oxygen reduction[J]. Electrochemistry Communications, 2009, 11(5): 954-957.
    Seo M H, Choi S M, Kim H J, et al. The graphene-supported Pd and Pt catalysts for highly active oxygen reduction reaction in an alkaline condition[J]. Electrochemistry Communications, 2011, 13(2): 182-185.
    Guo S, Sun S. FePt nanoparticles assembled on graphene as enhanced catalyst for oxygen reduction reaction[J]. Journal of the American Chemical Society, 2012, 134(5): 2492-2495.
    Guo S, Zhang S, Wu L, et al. Co/CoO nanoparticles assembled on graphene for electrochemical reduction of oxygen[J]. Angewandte Chemie International Edition, 2012, 51(47): 11770-11773.
    Liang Y, Li Y, Wang H, et al. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction[J]. Nature Material, 2011, 10(10): 780-786.
    Liang Y, Wang H, Zhou J, et al. Covalent hybrid of spinel manganese-cobalt oxide and graphene as advanced oxygen reduction electrocatalysts[J]. Journal of the American Chemical Society, 2012, 134(7): 3517-3523.
    Jin C, Lu F, Cao X, et al. Facile synthesis and excellent electrochemical properties of NiCo2O4 spinel nanowire arrays as a bifunctional catalyst for the oxygen reduction and evolution reaction[J]. Journal of Materials Chemistry A, 2013, 1(39): 12170-12177.
    Wu Z S, Yang S, Sun Y, et al. 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction[J]. Journal of the American Chemical Society, 2012, 134(22): 9082-9085.
    Lordi V, Yao N, Wei J. Method for supporting platinum on single-walled carbon nanotubes for a selective hydrogenation catalyst[J]. Chemistry of Materials, 2001, 13(3): 733-737.
    Antolini E. Carbon supports for low-temperature fuel cell catalysts[J]. Applied Catalysis B: Environmental, 2009, 88(1-2): 1-24.
    Hiura H, Ebbesen T W, Tanigaki K. Opening and purification of carbon nanotubes in high yields[J]. Advanced Materials, 1995, 7(3): 275-276.
    Prabhuram J, Zhao T S, Tang Z K, et al. Multiwalled carbon nanotube supported ptru for the anode of direct methanol fuel cells[J]. The Journal of Physical Chemistry B, 2006, 110(11): 5245-5252.
    Saha M S, Li R, Sun X. High loading and monodispersed Pt nanoparticles on multiwalled carbon nanotubes for high performance proton exchange membrane fuel cells[J]. Journal of Power Sources, 2008, 177(2): 314-322.
    Strelko V V, Kuts V S, Thrower P A. On the mechanism of possible influence of heteroatoms of nitrogen, boron and phosphorus in a carbon matrix on the catalytic activity of carbons in electron transfer reactions[J]. Carbon, 2000, 38(10): 1499-1503.
    Zhang L, Xia Z. Mechanisms of oxygen reduction reaction on nitrogen-doped graphene for fuel cells[J]. The Journal of Physical Chemistry C, 2011. 115(22): 11170-11176.
    Kim H, Lee K, Woo S I, et al. On the mechanism of enhanced oxygen reduction reaction in nitrogen-doped graphene nanoribbons[J]. Phys Chem Chem Phys, 2011, 13(39): 17505-17510.
    Hu X, Li H, Zhang Z. Adsorption and activation of O2 on nitrogen-doped carbon nanotubes[J]. The Journal of Physical Chemistry, 2010, 114(21): 9603-9607.
    Nagaiah T C, Bordoloi A, Sanchez M D, et al. Mesoporous nitrogen-rich carbon materials as catalysts for the oxygen reduction reaction in alkaline solution[J]. ChemSusChem, 2012, 5(4): 637-641.
    Wang X, Lee J S, Zhu Q, et al. Ammonia-treated ordered mesoporous carbons as catalytic materials for oxygen reduction reaction[J]. Chemistry of Materials, 2010, 22(7): 2178-2180.
    Zheng Y, Jiao Y, Chen J, et al. Nanoporous graphitic-C3N4 @ Carbon metal-free electrocatalysts for highly efficient oxygen reduction[J]. Journal of the American Chemical Society, 2011, 133: 20116-20119.
    Wang H, Bo X, Zhang Y, et al. Sulfur-doped ordered mesoporous carbon with high electrocatalytic activity for oxygen reduction[J]. Electrochimica Acta, 2013, 108: 404-411.
    Bo X, Guo L. Ordered mesoporous boron-doped carbons as metal-free electrocatalysts for the oxygen reduction reaction in alkaline solution[J]. Physical Chemistry Chemical Physics, 2013, 15(7): 2459-2465.
    Guo D, Shibuya R, Akiba C, et al. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts[J]. Science, 2016, 351(6271): 361-365.
    Liang J, Zhou R F, Chen X M, et al. Fe-N decorated hybrids of cnts grown on hierarchically porous carbon for high-performance oxygen reduction[J]. Advanced Materials, 2014, 26(35): 6074-6079.
  • 加载中
图(1)
计量
  • 文章访问数:  836
  • HTML全文浏览量:  259
  • PDF下载量:  1251
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-05
  • 录用日期:  2016-06-28
  • 修回日期:  2016-06-01
  • 刊出日期:  2016-06-28

目录

    /

    返回文章
    返回