留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钠-空气电池用碳基空气电极研究进展

刘山 柳丝丝 罗加严

刘山, 柳丝丝, 罗加严. 钠-空气电池用碳基空气电极研究进展. 新型炭材料, 2016, 31(3): 264-270.
引用本文: 刘山, 柳丝丝, 罗加严. 钠-空气电池用碳基空气电极研究进展. 新型炭材料, 2016, 31(3): 264-270.
LIU Shan, LIU Si-si, LUO Jia-yan. Carbon-based cathodes for sodium-air batteries. New Carbon Mater., 2016, 31(3): 264-270.
Citation: LIU Shan, LIU Si-si, LUO Jia-yan. Carbon-based cathodes for sodium-air batteries. New Carbon Mater., 2016, 31(3): 264-270.

钠-空气电池用碳基空气电极研究进展

基金项目: 国家自然科学青年基金项目(51502197);国家青年千人项目;化学工程联合国家重点实验室(SKL-ChE-15B02).
详细信息
    作者简介:

    刘山,博士研究生.E-mail:lishy63@126.com

    通讯作者:

    罗加严,研究员,E-mail:jluo@tju.edu.cn;柳丝丝,在站博士后,E-mail:liusisi@tju.edu.cn

  • 中图分类号: TQ127.1+1

Carbon-based cathodes for sodium-air batteries

Funds: National Natural Science Foundation of China (51502197);Chinese Government under "Thous and Youth Talents Program";State Key Laboratory of Chemical Engineering (SKL-ChE-15B02).
  • 摘要: 钠-空气电池具有能量密度高、放电平台高(2.3 V)及钠储量丰富等优点,被认为是一种极具发展前景的储能技术。然而,钠-空气电池仍存在诸多问题。本文综述了钠-空气电池近年来的发展状况,着重探讨了炭基空气电极的研究进展,并对钠-空气电池未来发展方向进行了展望。
  • Armand M, TarasconJ M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657.
    Bruce P G, Freunberger S A, Hardwick L J, et al. Li-O2 and Li-S batteries with high energy storage[J]. Nature Materials, 2011, 11(1): 19-29.
    Goodenough J B, Kim Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials, 2010, 22(3): 587-603.
    Kang S, Mo Y, Ong S P, et al. Nanoscale stabilization of sodium oxides: implications for Na-O2 batteries[J]. Nano letters, 2014, 14(2): 1016-1020.
    Zhang J G, Bruce P G, Zhang X G, et al. Metal-Air Batteries, in Handbook of Battery Materials [M]. Wiley-VCH Verlag GmbH & Co. KGaA, 2011, 757-795.
    Li Y, Dai H. Recent advances in zinc-air batteries[J]. Chemical Society Reviews, 2014, 43(15): 5257-5275.
    Milusheva Y, Boukoureshtlieva R I, Hristov S M, et al. Environmentally-clean Mg-air electrochemical power sources[J]. Bulgarian Chemical Communications, 2011, 43(1): 42-47.
    Kuo D T, Kirk D W, Jia C Q, et al. The chemistry of aqueous S (IV)-Fe-O2 system: State of the art[J]. Journal of Sulfur Chemistry, 2006, 27(5): 461-530.
    Ren X, Wu Y. A low-overpotential potassium-oxygen battery based on potassium superoxide[J]. Journal of the American Chemical Society, 2013, 135(8): 2923-2926.
    Hartmann P, Bender C L, Vra?ar M, et al. A rechargeable room-temperature sodium superoxide (NaO2) battery[J]. Nature materials, 2013, 12(3): 228-232.
    Wen Z, Shen C, Lu Y, et al. Air electrode for the lithium-air batteries: Materials and structure designs[J]. Chem Plus Chem, 2015, 80(2): 270-287.
    Zheng J P, Liang R Y, Hendrickson M, et al. Theoretical energy density of Li-air batteries[J]. Journal of The Electrochemical Society, 2008, 155(6): A432-A437.
    Cao R, Lee J S, Liu M, et al. Recent progress in non-precious catalysts for metal-air batteries[J]. Advanced Energy Materials, 2012, 2(7): 816-829.
    Yang S, Knickle H. Design and analysis of aluminum/air battery system for electric vehicles[J]. Journal of Power Sources, 2002, 112(1): 162-173.
    Scrosati B. The Lithium Air Battery: Fundamentals. Edited by Nobiyuki Imanishi, Alan C. Luntz, and Peter G. Bruce [M]. Angewandte Chemie International Edition, 2015, 54(19): 5554-5554.
    Sun Q, YangY, Fu Z W, et al. Electrochemical properties of room temperature sodium-air batteries with non-aqueous electrolyte[J]. Electrochemistry Communications, 2012, 16(1): 22-25.
    Peled E, Golodnitsky D, Mazor H, et al. Parameter analysis of a practical lithium-and sodium-air electric vehicle battery[J]. Journal of Power SourcesV, 2011, 196(16): 6835-6840.
    Kim J, Lim H D, Gwon H, et al. Sodium-oxygen batteries with alkyl-carbonate and ether based electrolytes[J]. Physical Chemistry Chemical Physics, 2013, 15(10): 3623-3629.
    Das S K, Lau S, Archer L A. Sodium-oxygen batteries: A new class of metal-air batteries[J]. Journal of Materials Chemistry A, 2014, 2(32): 12623-12629.
    Hartmann P, Gruübl D, Sommer H, et al. Pressure dynamics in metal-oxygen (metal-air) batteries: A case study on sodium superoxide cells[J]. The Journal of Physical Chemistry C, 2014, 118(3): 1461-1471.
    Li Y, Yadegari H, Li X, et al. Superior catalytic activity of nitrogen-doped graphene cathodes for high energy capacity sodium-air batteries[J]. Chemical Communications, 2013, 49(100): 11731-11733.
    Kim J, Park H, Lee B, et al. Dissolution and ionization of sodium superoxide in sodium-oxygen batteries[J]. Nature Communications, 2016, 7: 10670.
    Jian Z, Chen Y, Li F, et al. High capacity Na-O2 batteries with carbon nanotube paper as binder-free air cathode[J]. Journal of Power Sources, 2014, 251(2): 466-469.
    Adelhelm P, Hartmann P, Bender C L, et al. From lithium to sodium: Cell chemistry of room temperature sodium-air and sodium-sulfur batteries[J]. Beilstein Journal of Nanotechnology, 2015, 6(1): 1016-1055.
    Cheng F, Chen J. Metal-air batteries: From oxygen reduction electrochemistry to cathode catalysts[J]. Chemical Society Reviews, 2012, 41: 2172-2192.
    Park H W, Lee D U, Park M G, et al. Perovskite-nitrogen-doped carbon nanotube composite as bifunctional catalysts for rechargeable lithium-air batteries[J]. ChemSusChem, 2015, 8(6): 1058-1065.
    Wei W, Liang H, Parvez K, et al. Nitrogen-doped carbon nanosheets with size-defined mesopores as highly efficient metal-free catalyst for the oxygen reduction reaction[J]. Angewandte Chemie, 2014, 126(6): 1596-1600.
    Sun B, Huang X, Chen S, et al. Porous graphene nanoarchitectures: An efficient catalyst for low charge-overpotential, long life, and high capacity lithium-oxygen batteries[J]. Nano Letters, 2014, 14(6): 3145-3152.
    Peled E, Golodnitsky D, Hadar R, et al. Challenges and obstacles in the development of sodium-air batteries[J]. Journal of Power Sources, 2013, 244: 771-776.
    Liu W, Sun Q, Yang Y, et al. An enhanced electrochemical performance of a sodium-air battery with graphene nanosheets as air electrode catalysts[J]. Chemical Communications, 2013, 49(19): 1951-1953.
    Kim J, Lim H D, Gwon H, et al. Sodium-oxygen batteries with alkyl-carbonate and ether based electrolytes[J]. Physical Chemistry Chemical Physics, 2013, 15(10): 3623-3629.
    Das S K, Xu S, Archer L A, et al. Carbon dioxide assist for non-aqueous sodium-oxygen batteries[J]. Electrochemistry Communications, 2013, 27: 59-62.
    Lee B, Seo D H, Lim H D, et al. First-principles study of the reaction mechanism in sodium-oxygen batteries[J]. Chemistry of Materials, 2014, 26(2): 1048-1055.
    McCloskey B D, Garcia J M, Luntz A C, et al. Chemical and electrochemical differences in nonaqueous Li-O2 and Na-O2 batteries[J]. J Phys Chem Lett, 2014, 5(7): 1230-1235.
    Bender C L, Hartmann P, Vra?ar M, et al. On the thermodynamics, the role of the carbon cathode, and the cycle life of the sodium superoxide (NaO2) battery[J]. Advanced Energy Materials, 2014, 4(12): 3412-3420.
  • 加载中
图(1)
计量
  • 文章访问数:  420
  • HTML全文浏览量:  45
  • PDF下载量:  841
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-08
  • 录用日期:  2016-06-28
  • 修回日期:  2016-06-05
  • 刊出日期:  2016-06-28

目录

    /

    返回文章
    返回