留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

织构可控多孔炭纳米纤维的制备及其室温脱除低浓度氮氧化物

王明玺 郭泽宇 黄正宏 康飞宇

王明玺, 郭泽宇, 黄正宏, 康飞宇. 织构可控多孔炭纳米纤维的制备及其室温脱除低浓度氮氧化物. 新型炭材料, 2016, 31(3): 277-286.
引用本文: 王明玺, 郭泽宇, 黄正宏, 康飞宇. 织构可控多孔炭纳米纤维的制备及其室温脱除低浓度氮氧化物. 新型炭材料, 2016, 31(3): 277-286.
WANG Ming-xi, GUO Ze-yu, HUANG Zheng-hong, KANG Fei-yu. Preparation of porous carbon nanofibers with controllable pore structures for low-concentration NO removal at room temperature. New Carbon Mater., 2016, 31(3): 277-286.
Citation: WANG Ming-xi, GUO Ze-yu, HUANG Zheng-hong, KANG Fei-yu. Preparation of porous carbon nanofibers with controllable pore structures for low-concentration NO removal at room temperature. New Carbon Mater., 2016, 31(3): 277-286.

织构可控多孔炭纳米纤维的制备及其室温脱除低浓度氮氧化物

基金项目: 中日国际科技合作项目JST-MOST(2011DFA50430,2008DFA51410).
详细信息
    通讯作者:

    黄正宏,博士,副研究员.E-mail:zhhuang@mail.tsinghua.edu.cn

  • 中图分类号: TQ127.1+1

Preparation of porous carbon nanofibers with controllable pore structures for low-concentration NO removal at room temperature

Funds: Cooperative Project JST-MOST (2011DFA50430, 2008DFA51410).
  • 摘要: 采用静电纺丝法制备聚丙烯腈纤维,经预氧化、炭化和活化,得到具有孔径发达和比表面积大的多孔炭纳米纤维。控制纺丝液的浓度和活化条件,可制得织构可控的多孔炭纳米纤维。将所制备的纤维用于室温低浓度NO(20 ppm)的脱除,脱除效果主要基于吸附和催化氧化作用。纤维的织构影响其脱除NO的性能,直径越小、微孔越丰富、比表面积越大,对NO的吸附与催化氧化效果越好。当NO进口浓度为20 ppm时,在900℃下活化的平均直径为175 nm的多孔炭纳米纤维脱除NO率可高达29.7%。
  • Maggos T, Bartzis J G, Liakou M, et al. Photocatalytic degradation of NOx gases using TiO2-containing paint: A real scale study[J]. Journal of Hazardous materials, 2007, 146(3): 668-673.
    Sousa J P S, Pereira M F R, Figueiredo J L. NO oxidation over nitrogen doped carbon xerogels[J]. Applied Catalysis B: Environmental, 2012, 125(0): 398-408.
    Fang C, Zhang D, Cai S, et al. Low-temperature selective catalytic reduction of NO with NH3 over nanoflaky MnOx on carbon nanotubes in situ prepared via a chemical bath deposition route[J]. Nanoscale, 2013, 5(19): 9199-9207.
    Lonyi F, Solt H E, Valyon J, et al. The SCR of NO with methane over In,H-and Co, In, H-ZSM-5 catalysts: The promotional effect of cobalt[J]. Applied Catalysis B-Environmental, 2012, 117: 212-223.
    Ogihara H, Takenaka S, Yamanaka I, et al., Reduction of NO with the carbon nanofibers formed by methane decomposition[J]. Carbon, 2004, 42(8-9): 1609-1617.
    Li X G, Dong Y H, Xian H, et al. De-NOx in alternative lean/rich atmospheres on La1-xSrxCoO3 perovskites[J]. Energy & Environmental Science, 2011, 4(9): 3351-3354.
    Takahashi N, Yamazaki K, Sobukawa H, et al. The low-temperature performance of NOx storage and reduction catalyst[J]. Applied Catalysis B: Environmental, 2007, 70(1-4): 198-204.
    Kaneko K, Murata K. An analytical method of micropore filling of a supercritical gas[J]. Adsorption-Journal of the International Adsorption Society, 1997, 3(3): 197-208.
    Hodjati S, Petit C, Pitchon V, et al. Absorption/desorption of NOx process on perovskites: Nature and stability of the species formed on BaSnO3 [J]. Applied Catalysis B: Environmental, 2000, 27(2): 117-126.
    Zeng Z, Lu P, Li C T, et al. Removal of NO by carbonaceous materials at room temperature: A review[J]. Catalysis Science & Technology, 2012, 2(11): 2188-2199.
    Sousa J P S, Pereira M F R, Figueiredo J L. Catalytic oxidation of NO to NO2 on N-doped activated carbons[J]. Catalysis Today, 2011, 176(1): 383-387.
    Guo Z C, Xie Y S, Hong I Y, et al. Catalytic oxidation of NO to NO2 on activated carbon[J]. Energy Conversion and Management, 2001, 42(15-17): 2005-2018.
    Mochida I, Shirahama N, Kawano S, et al. NO oxidation over activated carbon fiber (ACF). Extended kinetics over a pitch based ACF of very large surface area[J]. Fuel, 2000, 79(14): 1713-1723.
    Adapa S, Gaur V, Verma N. Catalytic oxidation of NO by activated carbon fiber (ACF)[J]. Chemical Engineering Journal, 2006, 116(1): 25-37.
    Mochida I, Korai Y, Shirahama M, et al. Removal of SOx and NOx over activated carbon fibers[J]. Carbon, 2000, 38(2): 227-239.
    Serp P, Corrias M, Kalck P. Carbon nanotubes and nanofibers in catalysis[J]. Applied Catalysis a-General, 2003, 253: 337-358.
    Wang M X, Huang Z H, Bai Y, et al. Porous carbon nanofibers: Preparation and potential applications[J]. Current Organic Chemistry, 2013, 17(13): 1434-1447.
    Kim C, Yang K S. Electrochemical properties of carbon nanofiber web as an electrode for supercapacitor prepared by electrospinning[J]. Applied Physics Letters, 2003, 83(6): 1216-1218.
    Ji L W, Zhang X W. Fabrication of porous carbon/Si composite nanofibers as high-capacity battery electrodes[J]. Electrochemistry Communications, 2009, 11(6): 1146-1149.
    Zou L, Gan L, Lv R, et al. A film of porous carbon nanofibers that contain Sn/SnOx nanoparticles in the pores and its electrochemical performance as an anode material for lithium ion batteries[J]. Carbon, 2011, 49(1): 89-95.
    Ji L, Lin Z, Medford A J, et al. Porous carbon nanofibers from electrospun polyacrylonitrile/SiO2 composites as an energy storage material[J]. Carbon, 2009, 47(14): 3346-3354.
    Chae W S, An M J, Lee S W, et al. Templated carbon nanofiber with mesoporosity and semiconductivity[J]. Journal of Physical Chemistry B, 2006, 110: 6447-6450.
    Zhang W X, Cui J C, Tao C A, et al. Confined self-Assembly approach to produce ultrathin carbon nanofibers[J]. Langmuir, 2009. 25(14): 8235-8239.
    Huang C W, Chiu S C, Lin W H, et al., Preparation and characterization of porous carbon nanofibers from thermal decomposition of poly(ethylene glycol)[J]. Journal of Physical Chemistry C, 2008, 112(4): 926-931.
    Feng X, Liang Y, Zhi L, et al. Synthesis of microporous carbon nanofibers and nanotubes from conjugated polymer network and evaluation in electrochemical capacitor[J]. Advanced Functional Materials, 2009, 19(13): 2125-2129.
    Li C C, Yin X M, Chen L B, et al. Porous carbon nanofibers derived from conducting polymer: Synthesis and application in Lithium-Ion batteries with high-rate capability[J]. Journal of Physical Chemistry C, 2009, 113(30): 13438-13442.
    Nataraj S K, Kim B H, dela Cruz M, et al. Free standing thin webs of porous carbon nanofibers of polyacrylonitrile containing iron-oxide by electrospinning[J]. Materials Letters, 2009, 63(2): 218-220.
    Wang L, Huang Z H, Yue M, et al. Preparation of flexible phenolic resin-based porous carbon fabrics by electrospinning[J]. Chemical Engineering Journal, 2013, 218(0): 232-237.
    Merino C, Soto P, Vilaplana-Ortego E, et al. Carbon nanofibres and activated carbon nanofibres as electrodes in supercapacitors[J]. Carbon, 2005, 43(3): 551-557.
    Inagaki M, Yang Y, Kang F. Carbon nanofibers prepared via electrospinning[J]. Advanced Materials, 2012, 24(19): 2547-2566.
    Wang M X, Huang Z H, Shimohara T, et al. NO removal by electrospun porous carbon nanofibers at room temperature[J]. Chemical Engineering Journal, 2011, 170(2-3): 505-511.
    Ravikovitch P I, Neimark A V. Density functional theory model of adsorption on amorphous and microporous silica materials[J]. Langmuir, 2006, 22(26): 11171-11179.
    Neimark A V, Lin Y, Ravikovitch P I, et al. Quenched solid density functional theory and pore size analysis of micro-mesoporous carbons[J]. Carbon, 2009, 47(7): 1617-1628.
    Kaneko K, Ishii C, Kanoh H, et al. Characterization of porous carbons with high resolution alpha(s)-analysis and low temperature magnetic susceptibility[J]. Advances in Colloid and Interface Science, 1998, 76: 295-320.
    Huang Z M, Zhang Y Z, Kotaki M, et al. A review on polymer nanofibers by electrospinning and their applications in nanocomposites[J]. Composites Science and Technology, 2003, 63(15): 2223-2253.
    Andrady A L K. Science and Technology of Polymer Nanofibers [M]. Wiley Online Library: New Jersey, 2008.
    He J H, Liu Y, Mo L F, et al. Electrospun Nanofibres and Their Applications [M]. Smithers Rapra Technology: Shropshire,UK, 2008.
    Claudino A, Soares J L, Moreira R, et al. Adsorption equilibrium and breakthrough analysis for NO adsorption on activated carbons at low temperatures[J]. Carbon, 2004, 42(8-9): 1483-1490.
    Miyawaki J, Shimohara T, Shirahama N, et al. Removal of NOx from air through cooperation of the TiO2 photocatalyst and urea on activated carbon fiber at room temperature[J]. Applied Catalysis B-Environmental, 2011, 110: 273-278.
    Ng T Y, Ren Y X, Liew K M. Adsorption of hydrogen atoms onto the exterior wall of carbon nanotubes and their thermodynamics properties[J]. International Journal of Hydrogen Energy, 2010, 35(10): 4543-4553.
    Cotton F A, Winlkinson G. Advanced inorganic chemistry, Advanced inorganic chemistry[J]. New York: Interscience, 1972: 355.
    Shiratori N, Lee K J, Miyawaki J, et al. Pore structure analysis of activated carbon fiber by microdomain-based model[J]. Langmuir, 2009, 25(13): 7631-7637.
    Zhou JH, Sui ZJ, Zhu J, et al. Characterization of surface oxygen complexes on carbon nanofibers by TPD, XPS and FT-IR[J]. Carbon, 2007, 45(4): 785-796.
    Figueiredo J L, Pereira M F R, Freitas M M A, et al. Modification of the surface chemistry of activated carbons[J]. Carbon, 1999, 37(9): 1379-1389.
    Xue Y, Guo Y, Zhang Z, et al. The role of surface properties of activated carbon in the catalytic reduction of NO by carbon[J]. Applied Surface Science, 2008, 255(5): 2591-2595.
    Hueso J L, Espinos J P, Caballero A, et al. XPS investigation of the reaction of carbon with NO, O2, N2 and H2O plasmas[J]. Carbon, 2007, 45(1): 89-96.
  • 加载中
图(1)
计量
  • 文章访问数:  418
  • HTML全文浏览量:  69
  • PDF下载量:  678
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-08
  • 录用日期:  2016-06-28
  • 修回日期:  2016-06-04
  • 刊出日期:  2016-06-28

目录

    /

    返回文章
    返回