留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氮掺杂活性炭及其载铂催化剂氧还原催化活性

李莉香 张砚秋 孙盼松 安百钢 邢天宇 宋仁峰

李莉香, 张砚秋, 孙盼松, 安百钢, 邢天宇, 宋仁峰. 氮掺杂活性炭及其载铂催化剂氧还原催化活性. 新型炭材料, 2016, 31(3): 287-292.
引用本文: 李莉香, 张砚秋, 孙盼松, 安百钢, 邢天宇, 宋仁峰. 氮掺杂活性炭及其载铂催化剂氧还原催化活性. 新型炭材料, 2016, 31(3): 287-292.
LI Li-xiang, ZHANG Yan-qiu, SUN Pan-song, AN Bai-gang, XING Tian-yu, SONG Ren-feng. Preparation of Pt-loaded nitrogen-doped activated carbons and their catalytic activities for the oxygen reduction reaction. New Carbon Mater., 2016, 31(3): 287-292.
Citation: LI Li-xiang, ZHANG Yan-qiu, SUN Pan-song, AN Bai-gang, XING Tian-yu, SONG Ren-feng. Preparation of Pt-loaded nitrogen-doped activated carbons and their catalytic activities for the oxygen reduction reaction. New Carbon Mater., 2016, 31(3): 287-292.

氮掺杂活性炭及其载铂催化剂氧还原催化活性

基金项目: 国家自然科学基金(51102126);辽宁省高校创新团队(LT2014007);辽宁省自然科学基金(201502063).
详细信息
    作者简介:

    李莉香,教授,博士.E-mail:lxli2005@126.com

    通讯作者:

    安百钢,教授,博士.E-mail:baigang73@126.com.

  • 中图分类号: TQ152

Preparation of Pt-loaded nitrogen-doped activated carbons and their catalytic activities for the oxygen reduction reaction

Funds: National Natural Foundation of China (51102126);Innovative Research Team in Colleges and University of Liaoning Province, China (LT2014007);Natural Science Foundation of Liaoning Province, China (201502063).
  • 摘要: 采用化学原位聚合法制备聚吡咯/活性炭(AC)复合物,在惰性气氛进行热处理,制备了氮掺杂活性炭(NAC)。利用化学浸渍还原法制备AC和NAC载铂催化剂,并对比分析他们的氧还原催化性能。氮掺杂处理明显降低了活性炭的比表面积,但因其改善了活性炭水分散性和表面活性,铂在NAC表面沉积和分布较在AC载体表面更均匀。尤其经900℃炭化处理获得的氮掺杂活性炭NAC900,源于其微孔的高比表面积和含氮官能团共同作用,使铂粒子多以尺寸小于5 nm的粒子均匀沉积分布于载体表面,且铂担载量高。循环伏安曲线分析表明,与活性炭载铂催化剂(Pt-AC)相比,氮掺杂活性炭载铂催化剂(Pt-NAC900)的氧还原峰电位更正,氧还原峰电流为前者两倍,且峰电流随循环次数的衰减更低。结果表明,通过对传统炭材料活性炭进行氮掺杂处理,能够增强其载铂催化剂氧还原催化性能。
  • Li L, Hu L P, Li J, et al. Enhanced stability of Pt nanoparticle electrocatalysts for fuel cells[J]. Nano Research, 2015, 8(2): 418-440.
    Xu J, Gao P, ZhaoT S. Non-precious Co3O4 nano-rod electrocatalyst for oxygen reduction reaction in anion-exchange membrane fuel cells[J]. Energy & Environmental Science, 2012, 5: 5333-5339.
    Jiang S, Zhu C, Dong S. Cobalt and nitrogen-cofunctionalized graphene as durable non-precious metal catalyst with enhanced ORR activity[J]. Journal of Material Chemistry A, 2013, 1: 3593-3599.
    Gong K, Du F, Xia Z, et all. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction[J]. Science, 2009, 323: 760-764.
    Zheng Y, Jiao Y, Jaroniec M, et al. Nanostructured metal-free electrochemical catalysts for highly efficient oxygen reduction[J]. Small, 2012, 8(23): 3550-3566.
    Pérez-Mayoral E, Calvino-Casilda V, Soriano E. Metal-supported carbon-based materials: Opportunities and challenges in the synthesis of valuable products[J]. Catalysis Science & Technology, 2016, 6: 1265-1291.
    WANG Hao-qiang, ZHAO Zong-bin, CHEN Meng, et al. Nitrogen-doped mesoporous carbon nanosheets from coal tar high performance anode materials for lithium ion batteries[J]. New Carbon Materials, 2014, 29(4): 280-286. (王浩强, 赵宗彬, 陈 梦, 等. 煤焦油合成氮掺杂中孔炭纳米片及其储锂性能[J]. 新型炭材料, 2014, 29(4): 280-286.)
    Su J, Cao X, Wu J, et al. One-pot synthesis of boron-doped ordered mesoporous carbons as efficient electrocatalysts for the oxygen reduction reaction[J]. RSC Advances, 2016, 6: 24728-24737.
    Yan W, Cao X, Tian J. Nitrogen/sulfur dual-doped 3D reduced graphene oxide networks-supported CoFe2O4 with enhanced electrocatalytic activities for oxygen reduction and evolution reactions[J]. Carbon, 2016, 99: 195-202.
    Wu J, Zheng X J, Jin C, et al. Ternary doping of phosphorus, nitrogen, and sulfur into porous carbon for enhancing electrocatalytic oxygen reduction[J]. Carbon, 2015, 92: 327-338.
    Wang D W, Su D. Heterogeneous nanocarbon materials for oxygen reduction reaction[J]. Energy & Environmental Science, 2014, 7: 576-591.
    Kim H, Lee K, Woo S I, et al. On the mechanism of enhanced oxygen reduction reaction in nitrogen-doped graphene nanoribbons[J]. Physicak Chemistry Chemical Physics, 2011, 13(1): 505-510.
    Chen Z, Higgins D, Tao H, et al. Highly active nitrogen-doped carbon nanotubes for oxygen reduction reaction in fuel cell applications[J]. Journal of Physical Chemistry C, 2009, 113: 21008-21013.
    Yan U, Miao J, Yang Z, et al. Carbon nanotube catalysts: recent advances in synthesis, characterization and applications[J]. Chemical Society Reviews, 2015, 44: 3295-3346.
    Titirici M M, White R J, Brun N, et al. Sustainable carbon materials[J]. Chemical Society Reviews, 2015, 44: 250-290.
    Zhu C, Dong S. Recent progress in graphene-based nanomaterials as advanced electrocatalysts towards oxygen reduction reaction[J]. Nanoscale, 2013, 5: 1753-1767.
    Dorjgotov A, Ok J, Jeon Y K, et al. Activity and active sites of nitrogen-doped carbon nanotubes for oxygen reduction reaction[J]. Journal of Applied Electrochemistry, 2013, 43: 387-397.
    Yang Z, Nie H, Chen X, et al. Recent progress in doped carbon nanomaterials as effective cathode catalysts for fuel cell oxygen reduction reaction[J]. Journal of Power Sources, 2013, 236: 238-249.
    Nie Y, Li L, Wei Z. Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction[J]. Chemical Society Reviews, 2015, 44: 2168-2201.
    Shi L, Liang R P, Qiu J D. Controllable deposition of platinum nanoparticles on polyaniline-functionalized carbon nanotubes[J]. Journal of Materials Chemistry, 2012, 22: 17196-17203.
    Lepró X, Terrés E, Vega-Cantú Y, et al. Efficient anchorage of Pt clusters on N-doped carbon nanotubes and their catalytic activity[J]. Chemical Physics Letters, 2008, 463: 124-129.
    Rivera-Utrilla J, Sanchez-Polo M, Gomez-Serrano V, et al. Activated carbon modifications to enhance its water treatment applications. An overview[J]. Journal of Hazardous Materials, 2011, 187: 1-23.
    Rey A, Faraldos M, Casas J A, et al. Catalytic wet peroxide oxidation of phenol over Fe/AC catalysts: Influence of iron precursor and activated carbon surface[J]. Applied Catalysis B: Environmental, 2009, 86: 69-77.
    Subramanian V, Luo C, Stephan A M, et al. Supercapacitors from activated carbon derived from banana fibers[J]. Journal of Physical Chemistry C, 2007, 111: 7527-7531.
    Ucar S, Erdem M, Tay T, et al. Preparation and characterization of activated carbon produced from pomegranate seeds by ZnCl2 activation[J]. Applied Surface Science, 2009, 255(21): 8890-8896.
    Liu Q S, Zheng T, Wang P, et al. Preparation and characterization of activated carbon from bamboo by microwave-induced phosphoric acid activation[J]. Industrial Crops and Products, 2010, 31(2): 233-238.
    An B, Xu S, Li L, et al. Carbon nanotubes coated with a nitrogen-doped carbon layer and its enhanced electrochemical capacitance[J]. Journal of Materials Chemistry A, 2013, 1: 7222-7228.
    Ma W, Habrioux A, Luo Y, et al. Electronic interaction between platinum nanoparticles and nitrogen-doped reduced graphene oxide: Effect on the oxygen reduction reaction, Journal of Materials Chemistry A, 2015, 3: 11891-11904.
  • 加载中
图(1)
计量
  • 文章访问数:  519
  • HTML全文浏览量:  121
  • PDF下载量:  965
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-03
  • 录用日期:  2016-06-28
  • 修回日期:  2016-06-02
  • 刊出日期:  2016-06-28

目录

    /

    返回文章
    返回