留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微波辅助加热乙二醇法制备PtSn/CNT催化剂:pH值对其结构和电氧化甲醇性能的影响

黎海超 陈水挟 李启汉 刘风雷

黎海超, 陈水挟, 李启汉, 刘风雷. 微波辅助加热乙二醇法制备PtSn/CNT催化剂:pH值对其结构和电氧化甲醇性能的影响. 新型炭材料, 2016, 31(3): 293-300.
引用本文: 黎海超, 陈水挟, 李启汉, 刘风雷. 微波辅助加热乙二醇法制备PtSn/CNT催化剂:pH值对其结构和电氧化甲醇性能的影响. 新型炭材料, 2016, 31(3): 293-300.
LI Hai-chao, CHEN Shui-xia, LI Qi-han, LIU Feng-lei. Effect of the pH of the preparation medium on the microstructure and electrocatalytic activity of carbon nanotubes decorated with PtSn nanoparticles for use in methanol oxidation. New Carbon Mater., 2016, 31(3): 293-300.
Citation: LI Hai-chao, CHEN Shui-xia, LI Qi-han, LIU Feng-lei. Effect of the pH of the preparation medium on the microstructure and electrocatalytic activity of carbon nanotubes decorated with PtSn nanoparticles for use in methanol oxidation. New Carbon Mater., 2016, 31(3): 293-300.

微波辅助加热乙二醇法制备PtSn/CNT催化剂:pH值对其结构和电氧化甲醇性能的影响

基金项目: 国家自然科学基金(50373053);广东省科技计划项目(2012B091000080).
详细信息
    通讯作者:

    陈水挟,教授.E-mail:cescsx@mail.sysu.edu.cn

  • 中图分类号: TB333

Effect of the pH of the preparation medium on the microstructure and electrocatalytic activity of carbon nanotubes decorated with PtSn nanoparticles for use in methanol oxidation

Funds: National Natural Science Foundation of China (50373053);Science and Technology Project of Guangdong Province (2012B091000080).
  • 摘要: 采用微波辅助加热乙二醇法制备了碳纳米管(CNTs)负载的PtSn双组份催化剂。采用原子吸收光谱,X射线衍射仪和电子透射显微镜对产物进行了表征。结果表明,含金属离子前驱体的乙二醇溶液的pH值对产物的金属催化剂负载量、合金化程度和PtSn粒子的形态有显著的影响。在pH值为5时能得到组分配比为原始设计值的PtSn/CNT催化剂。在pH值2~7的范围内纳米粒子的尺寸较小,随着pH值的进一步提高,纳米粒子直径变大且发生团聚。电化学测试表明在pH值为5时得到的PtSn/CNT催化剂对甲醇电化学氧化具有最佳的催化作用。合适的金属负载比例和良好的纳米颗粒形状和尺寸分布控制是得到优异的催化性能的主要原因。
  • Eileen Hao Yu, Xu Wang, Ulrike Krewer, et al. Direct oxidation alkaline fuel cells: from materials to systems[J]. Energy Environ Sci, 2012, 5: 5668-5680.
    Kamarudin M Z F, Kamarudin S K, Masdar M S, et al. Direct ethanol fuel cells[J]. Int J Hydrogen Energ, 2013, 38(22): 9438-9453.
    Léger J M, Rousseau S, Coutanceau C, et al. How bimetallic electrocatalysts does work for reactions involved in fuel cells? Example of ethanol oxidation and comparison to methanol[J]. Electrochim Acta, 2005, 50(25-26): 5118-5125.
    Antolini E. Catalysts for direct ethanol fuel cells[J]. J Power Sources, 2007, 170(1): 1-12.
    Zheng L, Xiong L, Sun J, et al. Capping agent free synthesis of PtSn bimetallic nanoparticles with enhanced electrocatalytic activity and lifetime over methanol oxidation[J]. Catal Commun, 2008, 9(5): 624-629.
    Seden Beyhan, Christophe Coutanceau. Promising anode candidates for direct ethanol fuel cell: Carbon supported PtSn-based trimetallic catalysts prepared by Bönnemann method[J]. Int J Hydrogen Energ, 2013, 38(16): 6830-6841.
    Zhao S L, Yin H J, Du L, et al. Three dimensional N-doped graphene/PtRu nanoparticle hybrids as high performance anode for direct methanol fuel cells[J]. J Mater Chem A, 2014, 2: 3719-3724.
    Yang C, Wang D, Hu X, et al. Preparation and characterization of multi-walled carbon nanotube (MWCNTs)-supported Pt-Ru catalyst for methanol electrooxidation[J]. J Alloys Compd, 2008, 448(1-2): 109-115.
    Hsieh C T, Chou Y W, Chen W Y. Fabrication and electrochemical activity of carbon nanotubes decorated with PtRu nanoparticles in acid solution[J]. J Alloys Compd, 2008, 466(466): 233-240.
    Okaya K, Yano H, Uchida H, et al. Control of particle size of Pt and Pt alloy electrocatalysts supported on carbon black by the nanocapsule method[J]. ACS Appl Mater Interfaces, 2010, 2(2): 888-895.
    Nitul Kakati, Jatindranath Maiti, Seok Hee Lee, et al. Anode catalysts for direct methanol fuel cells in acidic media: Do we have any alternative for Pt or Pt-Ru?[J]. Chem Rev, 2014, 114 (24): 12397-12429.
    Neto A O, Watanabe A Y, Brandalise M, et al. Preparation and characterization of Pt-Rare Earth/C electrocatalysts using an alcohol reduction process for methanol electro-oxidation[J]. J Alloys Compd, 2009, 476(1-2): 288-291.
    Yin S, Shen P K, Song S, et al. Functionalization of carbon nanotubes by an effective intermittent microwave heating-assisted HF/H2O2 treatment for electrocatalyst support of fuel cells[J]. Electrochimica Acta, 2009, 54(27): 6954-6958.
    Chen W, Jie Z, Lee J Y, et al. Microwave heated polyol synthesis of carbon nanotubes supported Pt nanoparticles for methanol electrooxidation[J]. Mater Chem Phys, 2005, 91(1): 124-129.
    Ahmadi T S, Wang Z L, Green T C, et al. Shape-controlled synthesis of colloidal Platinum nanoparticles[J]. Science, 1996, 272(5270): 1924-1926.
    Christina B, Chantal P, Martin C, et al. Size-selected synthesis of PtRu nano-catalysts: Reaction and size control mechanism[J]. J Am Chem Soc, 2004, 126(25): 8028-8037.
    Li X, Chen W X, Zhao J, et al. Microwave polyol synthesis of Pt/CNTs catalysts: Effects of pH on particle size and electrocatalytic activity for methanol electrooxidization[J]. Carbon, 2005, 43(10): 2168-2174.
    Dong H, Wang D, Sun G, et al. Assembly of metal nanoparticles on electrospun nylon 6 nanofibers by control of interfacial hydrogen-bonding interactions[J]. Chem Mater, 2008, 20(21): 6627-6632.
    Xu Y, Xie X, Guo J, et al. Effects of annealing treatment and pH on preparation of citrate-stabilized PtRu/C catalyst[J]. J Power Sources, 2006, 162(1): 132-140.
    Jeng K T, Chien C C, Hsu N Y, et al. Performance of direct methanol fuel cell using carbon nanotube-supported Pt-Ru anode catalyst with controlled composition[J]. J Power Sources, 2006, 160(1): 97-104.
    Li H, Sun G, Lei C, et al. Comparison of different promotion effect of PtRu/C and PtSn/C electrocatalysts for ethanol electro-oxidation[J]. Electrochimica Acta, 2007, 52(24): 6622-6629.
    Hui X H, Shui X C, Yuan C. Platinum nanoparticles supported on activated carbon fiber as catalyst for methanol oxidation[J]. J Power Sources, 2008, 175(175): 166-174.
    Rodríguez-Reinoso F. The role of carbon materials in heterogeneous catalysis[J]. Carbon, 1998, 36(3): 159-175.
    Radovic L R, Rodriguez-Reinoso F. In Chemistry and Physics of Carbon[M]. Thrower P A, E Marcel Dekker Inc, New York, 1996, 25: 243-360.
    Yu R Q, Chen L W, Liu Q P, et al. Platinum deposition on carbon nanotubes via chemical modification[J]. Chem Mater, 1998, 10(3): 718-722.
    Leon C A L Y, Solar J M, Calemma V, et al. Evidence for the protonation of basal plane sites on carbon[J]. Carbon, 1992, 30(5): 797-811.
    Du H Y, Wang C H, Hsu H C, et al. Controlled platinum nanoparticles uniformly dispersed on nitrogen-doped carbon nanotubes for methanol oxidation[J]. Diamond Relat Mater, 2008, 17(4-5): 535-541.
    Jiang L, Lian G. Modified carbon nanotubes: An effective way to selective attachment of gold nanoparticles[J]. Carbon, 2003, 41(15): 2923-2929.
    Neto A O, Dias R R, Tusi M M, et al. Electro-oxidation of methanol and ethanol using PtRu/C, PtSn/C and PtSnRu/C electrocatalysts prepared by an alcohol-reduction process[J]. J Power Sources, 2007, 166(1): 87-91.
  • 加载中
图(1)
计量
  • 文章访问数:  386
  • HTML全文浏览量:  56
  • PDF下载量:  808
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-07
  • 录用日期:  2016-06-28
  • 修回日期:  2016-06-05
  • 刊出日期:  2016-06-28

目录

    /

    返回文章
    返回