留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中孔炭微球/酚醛树脂复合材料的力学及介电性能

周建国 朱小磊 张利 乔文明 龙东辉 凌立成

周建国, 朱小磊, 张利, 乔文明, 龙东辉, 凌立成. 中孔炭微球/酚醛树脂复合材料的力学及介电性能. 新型炭材料, 2016, 31(3): 301-306.
引用本文: 周建国, 朱小磊, 张利, 乔文明, 龙东辉, 凌立成. 中孔炭微球/酚醛树脂复合材料的力学及介电性能. 新型炭材料, 2016, 31(3): 301-306.
ZHOU Jian-guo, ZHU Xiao-lei, ZHANG Li, QIAO Wen-ming, LONG Dong-hui, LING Li-cheng. Mechanical and dielectric properties of mesoporous carbon microsphere/phenolic resin composites. New Carbon Mater., 2016, 31(3): 301-306.
Citation: ZHOU Jian-guo, ZHU Xiao-lei, ZHANG Li, QIAO Wen-ming, LONG Dong-hui, LING Li-cheng. Mechanical and dielectric properties of mesoporous carbon microsphere/phenolic resin composites. New Carbon Mater., 2016, 31(3): 301-306.

中孔炭微球/酚醛树脂复合材料的力学及介电性能

基金项目: 国家自然科学基金(21576090,51302083,51172071);中央高校基本科研业务费专项资金;上海市青年科技启明星计划资助(15QA1401300).
详细信息
    作者简介:

    周建国,博士研究生.E-mail:zhoujg10@163.com

    通讯作者:

    龙东辉,副教授.E-mail:longdh@mail.ecust.edu.cn

  • 中图分类号: TB332

Mechanical and dielectric properties of mesoporous carbon microsphere/phenolic resin composites

Funds: National Science Foundation of China (21576090, 51302083, 51172071);Fundamental Research Funds for the Central Universities and Shanghai Rising Star Program (15QA1401300).
  • 摘要: 以间苯二酚-甲醛为前驱体、喷雾干燥法可规模制备出中孔炭微球,进一步采用聚乙烯醇对其进行表面致密化处理,再与酚醛树脂热压成型得到中孔炭微球/酚醛树脂复合材料,系统研究了复合材料的力学性能及介电性能。结果表明,所制炭微球具有较窄的粒径分布(1~10μm)、发达的中孔孔隙(孔容>3.0 cm3/g)。经表面包覆后,中孔炭微球表面致密,形成类"蛋壳"结构。当用于复合材料填料(0~10%)时,能有效的降低复合材料的密度(1.36 g/cm3至1.12 g/cm3),并显著提升复合材料的力学性能(压缩强度由106 MPa增加至168 MPa);在102~107 Hz频率下,复合材料的介电常数随着炭微球添加量的增加逐渐提高,由4.0~3.6提高至10.4~9.1。结果表明,中孔炭微球可作为新一类多功能填料,在降低复合材料密度的同时增加力学性能,并在较宽频率下具备高的介电性能,具有优异的低密度吸波基体材料的应用潜力。
  • Che R C, Zhi C Y, Liang C Y, et al. Fabrication and microwave absorption of carbon nanotubes/CoFe2O4 spinel nanocomposite[J]. Applied Physics Letters, 2006, 88(3): 033105-033105-3.
    Che R C, Peng L M, Duan X F, et al. Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes[J]. Advanced Materials, 2004, 16(16): 401-405.
    Deng L J, Han M G. Microwave absorbing performances of multiwalled carbon nanotube composites with negative permeability[J]. Applied Physics Letters, 2007, 91(2): 023119-023119-3.
    Wei L S, Mao S C, Zhi L H, et al. High-temperature microwave absorption and evolutionary behavior of multiwalled carbon nanotube nanocomposite[J]. Scripta Materialia, 2009, 61(2): 201-204.
    Cao M S, Song W L, Hou Z L, et al. The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites[J]. Carbon, 2010, 48(3): 788-796.
    沈曾民, 戈 敏, 赵东林. 螺旋形炭纤维的吸波性能[J]. 新型炭材料, 2005, 20(4): 289-293. (SHEN Zeng-min, GE Min, ZHAO Dong-lin. The microwave absorbing properties of carbon microcoils[J]. New Carbon Materials, 2005, 20(04): 289-293.)
    Du Y, Liu T, Yu B, et al. The electromagnetic properties and microwave absorption of mesoporous carbon[J]. Materials Chemistry & Physics, 2012, 135(2-3): 884-891.
    Tian Y M, Lei L, Zhong Y Y. Direct synthesis of ordered mesoporous carbons[J]. Chemical Society Reviews, 2013, 42(9): 3977-4003.
    Xin W, Song Y. Mesoporous carbons: recent advances in synthesis and typical applications[J]. RSC Advances, 2015, 5(101): 83239-83285.
    Fuertes A B, Lota G, Centeno T A, et al. Templated mesoporous carbons for supercapacitor application[J]. Electrochimica Acta, 2005, 50(14): 2799-2805.
    Li Q, Jiang R, Dou Y, et al. Synthesis of mesoporous carbon spheres with a hierarchical pore structure for the electrochemical double-layer capacitor[J]. Carbon, 2011, 49(4): 1248-1257.
    王 妍, 杨 子, 黄云霞, 等. 多孔碳的制备及HMTA对其微波介电性能的影响[J]. 电子科技, 2015, 28(4): 173-175. (WANG Yan, YANG Zi, HUANG Yun-xia, et al. Preparation of porous carbon and the effect of HMTA on its microwave dielectric properties[J]. Electronic Science and Technology, 2015, 28(4): 173-175.)
    Jaroniec M, Gorka J, Choma J, et al. Synthesis and properties of mesoporous carbons with high loadings of inorganic species[J]. Carbon, 2009, 47(13): 3034-3040.
    Roberts A D, Xu L, Zhang H F. Porous carbon spheres and monoliths: morphology control, pore size tuning and their applications as Li-ion battery anode materials[J]. Chemical Society Reviews, 2014, 43(13): 4341-4356.
    Meng L, Xue J. Ordered mesoporous carbon nanoparticles with well-controlled morphologies from sphere to rod via a soft-template route[J]. Journal of Colloid & Interface Science, 2012, 377(1): 169-75.
    Yang H, Yan Y, Zhao D. Mesoporous materials with spherical morphology: synthesis and bioapplication[J]. Journal of Industrial and Engineering Chemistry, 2004, 10(7): 1146-1155.
    Li X, Zhou J, Wang J, et al. Large-scale synthesis of mesoporous carbon microspheres with controllable structure and nitrogen doping using a spray drying method[J]. Rsc Advances, 2014, 4: 62662-62665.
    Li Q, Xue Q, Zheng Q, et al. Large dielectric constant of the chemically purified carbon nanotube/polymer composites[J]. Materials Letters, 2008, 62(26): 4229-4231.
    Dang Z M, Peng B, Xie D, et al. High dielectric permittivity silver/polyimide composite films with excellent thermal stability[J]. Applied Physics Letters, 2008, 92(11): 112910-112910-3.
  • 加载中
图(1)
计量
  • 文章访问数:  749
  • HTML全文浏览量:  179
  • PDF下载量:  1059
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-03
  • 录用日期:  2016-06-28
  • 修回日期:  2016-06-01
  • 刊出日期:  2016-06-28

目录

    /

    返回文章
    返回