留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纳米管的微观结构调节对锂空气电池电化学行为的影响

王海帆 魏伟 秦磊 雷宇 余唯 刘如亮 吕伟 翟登云 杨全红

王海帆, 魏伟, 秦磊, 雷宇, 余唯, 刘如亮, 吕伟, 翟登云, 杨全红. 碳纳米管的微观结构调节对锂空气电池电化学行为的影响. 新型炭材料, 2016, 31(3): 307-314.
引用本文: 王海帆, 魏伟, 秦磊, 雷宇, 余唯, 刘如亮, 吕伟, 翟登云, 杨全红. 碳纳米管的微观结构调节对锂空气电池电化学行为的影响. 新型炭材料, 2016, 31(3): 307-314.
WANG Hai-fan, WEI Wei, QIN Lei, LEI Yu, YU Wei, LIU Ru-liang, LU Wei, ZHAI Deng-yun, YANG Quan-hong. Influence of the KOH activation of carbon nanotubes on their electrochemical behavior in lithium-air batteries. New Carbon Mater., 2016, 31(3): 307-314.
Citation: WANG Hai-fan, WEI Wei, QIN Lei, LEI Yu, YU Wei, LIU Ru-liang, LU Wei, ZHAI Deng-yun, YANG Quan-hong. Influence of the KOH activation of carbon nanotubes on their electrochemical behavior in lithium-air batteries. New Carbon Mater., 2016, 31(3): 307-314.

碳纳米管的微观结构调节对锂空气电池电化学行为的影响

基金项目: 国家重点基础研究发展计划(2014CB932400);国家自然科学基金(U1401243,21506212);深圳市基础研究计划(ZDSYS20140509172959981,JCYJ20150529164918734).
详细信息
    作者简介:

    王海帆,硕士研究生.E-mail:461730912@qq.com

    通讯作者:

    吕伟,博士.E-mail:lv.wei@sz.tsignhua.edu.cn;翟登云,博士.E-mail:aiai1588@gmail.com

  • 中图分类号: TQ127.1+1

Influence of the KOH activation of carbon nanotubes on their electrochemical behavior in lithium-air batteries

Funds: National Basic Research Program of China (2014CB932400);National Natural Science Foundation of China (U1401243, 21506212);Shenzhen Basic Research Project (ZDSYS20140509172959981, JCYJ20150529164918734).
  • 摘要: 锂空气电池的理论能量密度约是锂离子电池的10倍,因而受到研究者的广泛关注。碳质材料由于其稳定的结构和良好的导电性,目前仍作为锂空气电池的主要正极材料。通过KOH活化调节碳纳米管的表面特性和微观结构,将其作为锂空气电池正极材料,研究碳纳米管的微观结构变化对放电产物及电化学行为的影响。结果表明,当碳纳米管管壁被剥开导致大量边界原子外露,形成碳纳米管-石墨烯杂化结构,极大提高了碳纳米管正极的反应活性,放电容量和循环性能显著增加,放电产物分布均匀及颗粒减小,充电平台也显著降低。
  • Girishkumar G, Mccloskey B, Luntz A C, et al. Lithium-air battery: Promise and challenges[J]. Journal of Physical Chemistry Letters, 2010, 1(14): 2193-2203.
    Dunn B, Kamath H, Tarascon J M. Electrical energy storage for the grid: A battery of choices[J]. Science, 2011, 334(6058): 928-935.
    Bruce P G, Freunberger S A, Hardwick L J, et al. Li-O2 and Li-S batteries with high energy storage[J]. Nature Materials, 2012, 11(1): 19-29.
    Ottakam Thotiyl M M, Freunberger S A, Peng Z, et al. The carbon electrode in nonaqueous Li-O2 cells[J]. Journal of the American Chemical Society, 2013, 135(1): 494-500.
    Debart A, Paterson A J, Bao J, et al. Alpha-MnO2 nanowires: A catalyst for the O2 electrode in rechargeable lithium batteries[J]. Angewandte Chemie, 2008, 47(24): 4521-4524.
    Freunberger S A, Chen Y, Peng Z, et al. Reactions in the rechargeable lithium-O2 battery with alkyl carbonate electrolytes[J]. Journal of the American Chemical Society, 2011, 133(20): 8040-8047.
    Yamaki J, Tobishima S, Hayashi K, et al. A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte[J]. Journal of Power Sources, 1998, 74(2): 219-227.
    Younesi R, Hahlin M, Roberts M, et al. The SEI layer formed on lithium metal in the presence of oxygen: A seldom considered component in the development of the Li-O2 battery[J]. Journal of Power Sources, 2013, 225(40-45).
    Steiger J, Kramer D, M nig R. Mechanisms of dendritic growth investigated by in situ light microscopy during electrodeposition and dissolution of lithium[J]. Journal of Power Sources, 2014, 261(112-119).
    Li Y, Wang J, Li X, et al. Nitrogen-doped carbon nanotubes as cathode for lithium-air batteries[J]. Electrochemistry Communications, 2011, 13(7): 668-672.
    Cheng H, Scott K. Carbon-supported manganese oxide nanocatalysts for rechargeable lithium-air batteries[J]. Journal of Power Sources, 2010, 195(5): 1370-1374.
    Tasis D, Tagmatarchis N, Bianco A, et al. Chemistry of carbon nanotubes[J]. Chemical Reviews, 2006, 106(3): 1105-1136.
    Baughman R H, Zakhidov A A, De Heer W A. Carbon nanotubes-the route toward applications[J]. Science, 2002, 297(5582): 787-792.
    Guo X, Zhao N. The role of charge Reactions in cyclability of lithium-oxygen batteries[J]. Advanced Energy Materials, 2013, 3(11): 1413-1416.
    Li J, Peng B, Zhou G, et al. Partially cracked carbon nanotubes as cathode materials for lithium-air batteries[J]. ECS Electrochemistry Letters, 2012, 2(2): A25-A27.
    Mi R, Liu H, Wang H, et al. Effects of nitrogen-doped carbon nanotubes on the discharge performance of Li-air batteries[J]. Carbon, 2014, 67: 744-752.
    Mitchell R R, Gallant B M, Thompson C V, et al. All-carbon-nanofiber electrodes for high-energy rechargeable Li-O2 batteries[J]. Energy & Environmental Science, 2011, 4(8): 2952.
    Lim H D, Park K Y, Song H, et al. Enhanced power and rechargeability of a Li-O2 battery based on a hierarchical-fibril CNT electrode[J]. Advanced Materials, 2013, 25(9): 1348-1352.
    Liu S, Wang Z, Yu C, et al. Free-standing, hierarchically porous carbon nanotube film as a binder-free electrode for high-energy Li-O2 batteries[J]. Journal of Materials Chemistry A, 2013, 1(39): 12033.
    Gallant B M, Kwabi D G, Mitchell R R, et al. Influence of Li2O2 morphology on oxygen reduction and evolution kinetics in Li-O2 batteries[J]. Energy & Environmental Science, 2013, 6(8): 2518.
    Zhong L, Mitchell R R, Liu Y, et al. In situ transmission electron microscopy observations of electrochemical oxidation of Li2O2[J]. Nano Letters, 2013, 13(5): 2209-2214.
    Wei W, Tao Y, Lv W, et al. Unusual high oxygen reduction performance in all-carbon electrocatalysts[J]. Scientific reports, 2014, 4: 6289.
    Zheng C, Zhou X F, Cao H L, et al. Edge-enriched porous graphene nanoribbons for high energy density supercapacitors[J]. Journal of Materials Chemistry A, 2014, 2(20): 7484.
    Han J, Kim W, Kim H K, et al. Longitudinal unzipped carbon nanotubes with high specific surface area and trimodal pore structure[J]. RSC Adv, 2016, 6(11): 8661-8668.
    Romanos J, Beckner M, Rash T, et al. Nanospace engineering of KOH activated carbon[J]. Nanotechnology, 2012, 23(1): 15401.
    Raymundo-Piñero E, Azaïs P, Cacciaguerra T, et al. KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organisation[J]. Carbon, 2005, 43(4): 786-795.
    Ding N, Chien S W, Hor T S A, et al. Influence of carbon pore size on the discharge capacity of Li-O2 batteries[J]. Journal of Materials Chemistry A, 2014, 2(31): 12433.
    Chuang C C, Huang J H, Chen W J, et al. Role of amorphous carbon nanowires in reducing the turn-on field of carbon films prepared by microwave-heated CVD[J]. Diamond and Related Materials, 2004, 13(4-8): 1012-1016.
    Yang X H, He P, Xia Y Y. Preparation of mesocellular carbon foam and its application for lithium/oxygen battery[J]. Electrochemistry Communications, 2009, 11(6): 1127-1130.
    Li L, Liu C, He G, et al. Hierarchical pore-in-pore and wire-in-wire catalysts for rechargeable Zn-and Li-air batteries with ultra-long cycle life and high cell efficiency[J]. Energy Environ Sci, 2015, 8(11): 3274-3282.
    Huang S, Fan W, Guo X, et al. Positive role of surface defects on carbon nanotube cathodes in overpotential and capacity retention of rechargeable lithium-oxygen batteries[J]. ACS Applied Materials & Interfaces, 2014, 6(23): 21567-21575.
  • 加载中
图(1)
计量
  • 文章访问数:  686
  • HTML全文浏览量:  119
  • PDF下载量:  870
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-05
  • 录用日期:  2016-06-28
  • 修回日期:  2016-06-01
  • 刊出日期:  2016-06-28

目录

    /

    返回文章
    返回