留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚苯胺复合石墨烯纳米卷的制备及其在超级电容器中的应用

郑冰娜 高超

郑冰娜, 高超. 聚苯胺复合石墨烯纳米卷的制备及其在超级电容器中的应用. 新型炭材料, 2016, 31(3): 315-320.
引用本文: 郑冰娜, 高超. 聚苯胺复合石墨烯纳米卷的制备及其在超级电容器中的应用. 新型炭材料, 2016, 31(3): 315-320.
ZHENG Bing-na, GAO Chao. Preparation of graphene nanoscroll/polyaniline composites and their use in high performance supercapacitors. New Carbon Mater., 2016, 31(3): 315-320.
Citation: ZHENG Bing-na, GAO Chao. Preparation of graphene nanoscroll/polyaniline composites and their use in high performance supercapacitors. New Carbon Mater., 2016, 31(3): 315-320.

聚苯胺复合石墨烯纳米卷的制备及其在超级电容器中的应用

基金项目: 国家自然科学基金(21325417,51533008).
详细信息
    作者简介:

    郑冰娜,博士,E-mail:zhengbn87@163.com

    通讯作者:

    高超,教授,E-mail:cgao18@163.com

  • 中图分类号: TQ127.1+1

Preparation of graphene nanoscroll/polyaniline composites and their use in high performance supercapacitors

Funds: National Natural Science Foundation of China (21325417, 51533008).
  • 摘要: 石墨烯纳米卷是一种具有开放式螺旋状纳米卷结构的管状石墨烯。以石墨烯纳米卷为模板,利用原位聚合的方法,将聚苯胺生长在石墨烯纳米卷表面。通过对材料形貌进行表征,发现聚苯胺均匀地分布在石墨烯纳米卷表面。分别对3种不同单体浓度的聚苯胺复合石墨烯纳米卷进行电化学性能考察,结果发现石墨烯纳米卷和聚苯胺产生的协同效应使得复合卷在继承石墨烯纳米卷良好的倍率特性同时显著地提升了比电容,在1 A/g时比电容可达320 F/g,100 A/g时仍可以保持92.1%的初始电容,为制备高比容、快速充放电的石墨烯纳米卷基超级电容器奠定了基础。
  • Viculis L M, Mack J J, Kaner R B. A chemical route to carbon nanoscrolls[J]. Science, 2003, 299: 1361.
    Quintana M, Gizelcazk M, Spyrou K, et al. A Simple road for the transformation of few-layer graphene into MWNTs[J]. J Am Chem Soc, 2012, 134: 13310-13315.
    Xie X, Ju L, Feng X, et al. Controlled fabrication of high-quality carbon nanoscrolls from monolayer graphene[J]. Nano Lett, 2009, 9: 2565-2570.
    Schaper A K, Wang M S, Xu Z, et al. Comparative studies on the electrical and mechanical behavior of catalytically grown multiwalled carbon nanotubes and scrolled graphene[J]. Nano Lett, 2011, 11: 3295-3300.
    Zeng F, Kuang Y, Wang Y, et al. Facile preparation of high-quality graphene scrolls from graphite oxide by a microexplosion method[J]. Adv Mater, 2011, 23: 4929-4932.
    Zeng F, Kuang Y, Liu G, et al. Supercapacitors based on high-quality graphene scrolls[J]. Nanoscale, 2012, 4: 3997-4001.
    Fan T, Zeng W, Niu Q, et al. Fabrication of high-quality graphene oxide nanoscrolls and application in supercapacitor[J]. Nanoscale Res Lett, 2015, 10: 192.
    Zhou W, Liu J, Chen T, et al. Fabrication of Co3O4-reduced graphene oxide scrolls for high-performance supercapacitor electrodes[J]. Phys Chem Chem Phys, 2011, 13: 14462-14465.
    Zheng B, Xu Z, Gao C. Massive production of graphene nanoscrolls and their assist for high rate performance supercapacitors[J]. Nanoscale, 2016, 8: 1413.
    Yan M, Wang F, Han C, et al. Nanowire templated semihollow bicontinuous graphene scrolls: designed construction, mechanism, and enhanced energy storage performance[J]. J Am Chem Soc, 2013, 135: 8176-18182.
    Li D, Huang J X, Kaner R B. Polyaniline nanofibers: A unique polymer nanostructure for versatile applications[J]. Acc Chem Res, 2009, 42: 135-145.
    Bai H, Shi G Q. Gas sensors based on conducting polymers[J]. Sensors, 2007, 7: 267-307
    Kang E T, Neoh K G, Tan K L. Polyaniline: A polymer with many Interesting intrinsic redox states[J]. Prog Polym Sci, 1998, 23: 277-324.
    Ryu K S, Kim K M, Park N G, et al. Symmetric redox supercapacitor with conducting polyaniline electrodes[J]. J Power Sources, 2002, 103: 305-309.
    McAllister M J, Li J L, Adamson D H, et al. Single sheet functionalized graphene by oxidation and thermal expansion of graphite[J]. Chem Mater, 2007, 19: 4396-4404.
    Zhang J, Jiang J, Li H, et al. A high-performance asymmetric supercapacitor fabricated with graphene-based electrodes[J]. Energy Environ Sci, 2011, 4: 4009-4015.
    Xie K, Qin X, Wang X, et al. Carbon nanocages as supercapacitor electrode materials[J]. Adv Mater, 2012, 24: 347-352.
    Liu F, Song S, Xue D, et al. Folded structured graphene paper for high performance electrode materials[J]. Adv Mater, 2012, 24: 1089-1094.
    Bo Z, Zhu W, Ma W, et al. Vertically oriented graphene bridging active-layer/current-collector interface for ultrahigh rate supercapacitors[J]. Adv Mater, 2013, 25: 5799-5806.
    Huang T, Zheng B, Liu Z, et al. High rate capability supercapacitors assembled from wet-spun graphene films with a CaCO3 template[J]. J Mater Chem A, 2015, 3: 1890-1895.
    Yoon Y, Lee K, Baik C, et al. Anti-solvent derived non-stacked reduced graphene oxide for high performance supercapacitors[J]. Adv Mater, 2013, 25: 4437-4444.
  • 加载中
图(1)
计量
  • 文章访问数:  575
  • HTML全文浏览量:  92
  • PDF下载量:  517
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-12
  • 录用日期:  2016-06-28
  • 修回日期:  2016-06-10
  • 刊出日期:  2016-06-28

目录

    /

    返回文章
    返回