留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锂离子电池硅/碳复合网状整体电极的制备与性能

吴军雄 秦显营 梁葛萌 韵勤柏 贺艳兵 康飞宇 李宝华

吴军雄, 秦显营, 梁葛萌, 韵勤柏, 贺艳兵, 康飞宇, 李宝华. 锂离子电池硅/碳复合网状整体电极的制备与性能. 新型炭材料, 2016, 31(3): 321-327.
引用本文: 吴军雄, 秦显营, 梁葛萌, 韵勤柏, 贺艳兵, 康飞宇, 李宝华. 锂离子电池硅/碳复合网状整体电极的制备与性能. 新型炭材料, 2016, 31(3): 321-327.
WU Jun-xiong, QIN Xian-ying, LIANG Ge-meng, YUN Qin-bai, HE Yan-bing, KANG Fei-yu, LI Bao-hua. A binder-free web-like silicon-carbon nanofiber-graphene hybrid membrane for use as the anode of a lithium-ion battery. New Carbon Mater., 2016, 31(3): 321-327.
Citation: WU Jun-xiong, QIN Xian-ying, LIANG Ge-meng, YUN Qin-bai, HE Yan-bing, KANG Fei-yu, LI Bao-hua. A binder-free web-like silicon-carbon nanofiber-graphene hybrid membrane for use as the anode of a lithium-ion battery. New Carbon Mater., 2016, 31(3): 321-327.

锂离子电池硅/碳复合网状整体电极的制备与性能

基金项目: 国家重点基础研究发展计划(2014CB932400);国家自然科学基金(51202121,51232005);NSAF(U1330123).
详细信息
    作者简介:

    吴军雄,硕士研究生.E-mail:wujx13@mails.tsinghua.edu.cn

    通讯作者:

    李宝华,教授.E-mail:libh@mail.sz.tsinghua.edu.cn

  • 中图分类号: TB332

A binder-free web-like silicon-carbon nanofiber-graphene hybrid membrane for use as the anode of a lithium-ion battery

Funds: National Key Basic Research Program of China (2014CB932400);National Natural Science Foundation of China (51202121, 51232005);NSAF (U1330123).
  • 摘要: 基于静电喷雾沉积技术制备了硅-纳米炭纤维-石墨烯杂化膜(Si/CNF/G),其中纳米硅颗粒包覆在多孔炭基体中,由纳米硅和多孔炭组成的二次结构被镶嵌在由纳米炭纤维和石墨烯组成的三维交联炭网络中,最终构成无粘结剂的硅/碳复合整体电极。Si/CNF/G三维杂化膜用作锂离子电池电极时,表现高的可逆比容量、长的循环寿命和良好的倍率性能。0.2 A·g-1恒定电流密度下,首次可逆比容量为957 mAh·g-1,经100圈循环容量保持率为74.4%;2 A·g-1恒定电流密度下,可逆比容量为539 mAh·g-1。多孔炭基体可有效缓冲硅的体积变化,促进形成稳定的固态电解质界面;纳米炭纤维和石墨烯构建的三维炭网络既稳定了电极的整体结构,又可为电子和离子提供快速传输通道。
  • Obrovac M N, Chevrier V L. Alloy negative electrodes for Li-ion batteries[J]. Chemical Reviews, 2014, 114: 11444-11502.
    Wu H, Cui Y. Designing nanostructured Si anodes for high energy lithium ion batteries[J]. Nano Today, 2012, 7: 414-429.
    Kim H, Seo M, Park M H, et al. A critical size of silicon nano-anodes for lithium rechargeable batteries[J]. Angewandte Chemie International Edition, 2010, 49: 2146-2149.
    Wu H, Chan G, Choi J W, et al. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control[J]. Nature Nanotechnology, 2012, 7: 310-315.
    Magasinski A, Dixon P, Hertzberg B, et al. High-performance lithium-ion anodes using a hierarchical bottom-up approach[J]. Nature Materials, 2010, 9: 353-358.
    Kovalenko I, Zdyrko B, Magasinski A, et al. A major constituent of brown algae for use in high-capacity Li-ion batteries[J]. Science, 2011, 334: 75-79.
    Koo B, Kim H, Cho Y, et al. A highly cross-linked polymeric binder for high-performance silicon negative electrodes in lithium ion batteries[J]. Angewandte Chemie International Edition, 2012, 51(35): 8762-8767.
    Higgins T M, Park S H, King P J, et al. A commercial conducting polymer as both binder and conductive additive for silicon nanoparticle-based lithium-ion battery negative electrodes[J]. ACS Nano, 2016, 10(3): 3702-3713.
    Li S, Qin X, Zhang H, et al. Silicon/carbon composite microspheres with hierarchical core-shell structure as anode for lithium ion batteries[J]. Electrochemistry Communications, 2014, 49: 98-102.
    Zhang H, Qin X, Wu J, et al. Electrospun core-shell silicon/carbon fibers with internal honeycomb-like conductive carbon framework as anode for lithium ion batteries[J]. Journal of Materials Chemistry A, 2015, 3: 7112-7120.
    Liu N, Lu Z, Zhao J, et al. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes[J]. Nature Nanotechnology, 2014, 9: 187-192.
    Liu N, Wu H, McDowell M T, et al. A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes[J]. Nano Letters, 2012, 12: 3315-3321.
    Jung D S, Hwang T H, Park S B, et al. Spray drying method for large-scale and high-performance silicon negative electrodes in Li-ion batteries[J]. Nano Letters, 2013, 13: 2092-2097.
    Fu Y, Manthiram A. Silicon nanoparticles supported on graphitic carbon paper as a hybrid anode for Li-ion batteries[J]. Nano Energy, 2013, 2: 1107-1112.
    Hassan F M, Chabot V, Elsayed A R, et al. Engineered Si electrode nanoarchitecture: A scalable postfabrication treatment for the production of next-generation Li-ion batteries[J]. Nano Letters, 2013, 14: 277-283.
    Zhang B, Zheng Q B, Huang Z D, et al. SnO2-graphene-carbon nanotube mixture for anode material with improved rate capacities[J]. Carbon, 2011, 49(13): 4524-4534.
    Chang J, Huang X, Zhou G, et al. Multilayered Si nanoparticle/reduced graphene oxide hybrid as a high-performance lithium-ion battery anode[J]. Advanced Materials, 2014, 26(5): 758-764.
    Zhou X, Cao A M, Wan L J, et al. Spin-coated silicon nanoparticle/graphene electrode as a binder-free anode for high-performance lithium-ion batteries[J]. Nano Research, 2012, 5(12): 845-853.
    Munaò D, Valvo M, Van E J, et al. Silicon-based nanocomposite for advanced thin film anodes in lithium-ion batteries[J]. Journal of Materials Chemistry, 2012, 22(4): 1556-1561.
    Li X, Dhanabalan A, Gu L, et al. Three-dimensional porous core-shell Sn@ carbon composite anodes for high-performance lithium-ion battery applications[J]. Advanced Energy Materials, 2012, 2(2): 238-244.
    Wu J, Qin X, Zhang H, et al. Multilayered silicon embedded porous carbon/graphene hybrid film as a high performance anode[J]. Carbon, 2015, 84: 434-443.
  • 加载中
图(1)
计量
  • 文章访问数:  667
  • HTML全文浏览量:  115
  • PDF下载量:  1251
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-06
  • 录用日期:  2016-06-28
  • 修回日期:  2016-06-01
  • 刊出日期:  2016-06-28

目录

    /

    返回文章
    返回