留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超级电容器用高性能石油焦基多孔炭的制备及改性

谭明慧 郑经堂 李朋 椿范立 吴明铂

谭明慧, 郑经堂, 李朋, 椿范立, 吴明铂. 超级电容器用高性能石油焦基多孔炭的制备及改性. 新型炭材料, 2016, 31(3): 343-351.
引用本文: 谭明慧, 郑经堂, 李朋, 椿范立, 吴明铂. 超级电容器用高性能石油焦基多孔炭的制备及改性. 新型炭材料, 2016, 31(3): 343-351.
TAN Ming-hui, ZHENG Jing-tang, LI Peng, Tsubaki Noritatsu, WU Ming-bo. Preparation and modification of high performance porous carbons from petroleum coke for use as supercapacitor electrodes. New Carbon Mater., 2016, 31(3): 343-351.
Citation: TAN Ming-hui, ZHENG Jing-tang, LI Peng, Tsubaki Noritatsu, WU Ming-bo. Preparation and modification of high performance porous carbons from petroleum coke for use as supercapacitor electrodes. New Carbon Mater., 2016, 31(3): 343-351.

超级电容器用高性能石油焦基多孔炭的制备及改性

基金项目: 国家自然科学基金(51172285,51372277,51402192);中央高校基本科研业务费专项资金(15CX08005A).
详细信息
    作者简介:

    谭明慧,博士研究生.E-mail:tantanlele@163.com

    通讯作者:

    吴明铂.E-mail:wumb@upc.edu.cn;椿范立.E-mail:tsubaki@eng.u-toyama.ac.jp

  • 中图分类号: TQ127.1+1

Preparation and modification of high performance porous carbons from petroleum coke for use as supercapacitor electrodes

Funds: National Natural Science Foundation of China (51172285, 51372277, 51402192);Fundamental Research Funds for the Central Universities (15CX08005A).
  • 摘要: 以石油炼制副产品石油焦为原料,采用KOH活化法制备高比面积多孔炭,通过氨水水热处理对多孔炭进行表面渗氮改性。系统考察了KOH/石油焦比例(碱/炭比)对多孔炭孔结构及电化学性能的影响。结果表明多孔炭的比表面积、孔结构和电化学性能可以通过碱/炭比有效地调控。随着碱/炭比的增大,多孔炭的孔道逐渐增大,当碱炭比为3:1时最大比表面积达到2964 m2·g-1。当碱/炭比为5:1时,多孔炭的比表面积和中孔率分别高达2842 m2·g-1和67.0%,其在50 mA·g-1电流密度下的比电容达到350 F·g-1。氨水水热处理多孔炭,可以有效地在多孔炭表面引入氮原子,从而提高了多孔炭电极的电化学性能,尤其提高其在高电流密度下的比电容值。KOH活化以及氨水水热处理为制备高性能低成本石油焦基超级电容器电极材料提供了一种简单有效的方法。
  • Burke A. Ultracapacitors: Why, how, and where is the technology[J]. Journal of Power Sources, 2000, 91(1): 37-50.
    Lewandowski A, Galinski M. Practical and theoretical limits for electrochemical double-layer capacitors[J]. Journal of Power Sources, 2007, 173(2): 822-828.
    Choi N S, Chen Z, Freunberger S A, et al. Challenges facing lithium batteries and electrical double-layer capacitors[J]. Angewandte Chemie International Edition, 2012, 51(40): 9994-10024.
    Simon P, Gogotsi Y. Materials for electrochemical capacitors[J]. Nature Materials, 2008, 7(11): 845-854.
    Wang G, Zhang L, Zhang J. A review of electrode materials for electrochemical supercapacitors[J]. Chemical Society Reviews, 2012, 41(2): 797-828.
    Zhai Y, Dou Y, Zhao D, et al. Carbon materials for chemical capacitive energy storage[J]. Advanced Materials, 2011, 23(42): 4828-4850.
    Inagaki M, Konno H, Tanaike O. Carbon materials for electrochemical capacitors[J]. Journal of Power Sources, 2010, 195(24): 7880-7903.
    Frackowiak E, Béguin F. Carbon materials for the electrochemical storage of energy in capacitors[J]. Carbon, 2001, 39(6): 937-950.
    Pandolfo A G, Hollenkamp A F. Carbon properties and their role in supercapacitors[J]. Journal of Power Sources, 2006, 157(1): 11-27.
    Qu D. Studies of the activated carbons used in double-layer supercapacitors[J]. Journal of Power Sources, 2002, 109(2): 403-411.
    Chmiola J, Yushin G, Gogotsi Y, et al. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer[J]. Science, 2006, 313(5794): 1760-1763.
    Zhou H, Zhu S, Hibino M, et al. Electrochemical capacitance of self-ordered mesoporous carbon[J]. Journal of Power Sources, 2003, 122(2): 219-223.
    Li L, Song H, Chen X. Pore characteristics and electrochemical performance of ordered mesoporous carbons for electric double-layer capacitors[J]. Electrochimica Acta, 2006, 51(26): 5715-5720.
    Wang J, Xue C, Lv Y, et al. Kilogram-scale synthesis of ordered mesoporous carbons and their electrochemical performance[J]. Carbon, 2011, 49(13): 4580-4588.
    Wu M, Ai P, Tan M, et al. Synthesis of starch-derived mesoporous carbon for electric double layer capacitor[J]. Chemical Engineering Journal, 2014, 245: 166-172.
    Ryoo R, Joo S H, Kruk M, et al. Ordered Mesoporous Carbons[J]. Advanced Materials, 2001, 13(9): 677-681.
    Fuertes A B, Nevskaia D M. Control of mesoporous structure of carbons synthesised using a mesostructured silica as template[J]. Microporous Mesoporous Materials, 2003, 62(3): 177-190.
    Chmiola J, Yushin G, Dash R, et al. Effect of pore size and surface area of carbide derived carbons on specific capacitance[J]. Journal of Power Sources, 2006, 158(1): 765-772.
    Gao F, Shao G, Qu J, et al. Tailoring of porous and nitrogen-rich carbons derived from hydrochar for high-performance supercapacitor electrodes[J]. Electrochimica Acta, 2015, 155: 201-208.
    Li B, Dai F, Xiao Q, et al. Nitrogen-doped activated carbon for a high energy hybrid supercapacitor[J]. Energy & Environmental Science, 2016, 9(1): 102-106.
    Chen L, Zhang X, Liang H, et al. Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors[J]. ACS Nano, 2012, 6(8): 7092-7102.
    Zhao L, Fan L, Zhou M, et al. Nitrogen-containing hydrothermal carbons with superior performance in supercapacitors[J]. Advanced Materials, 2010, 22(45): 5202-5206.
    Wu M, Zha Q, Qiu J, et al. Preparation of porous carbons from petroleum coke by different activation methods[J]. Fuel, 2005, 84(14-15): 1992-1997.
    Lu C, Xu S, Gan Y, et al. Effect of pre-carbonization of petroleum cokes on chemical activation process with KOH[J]. Carbon, 2005, 43(11): 2295-2301.
    He X, Geng Y, Qiu J, et al. Effect of activation time on the properties of activated carbons prepared by microwave-assisted activation for electric double layer capacitors[J]. Carbon, 2010, 48(5): 1662-1669.
    Xu B, Chen Y, Wei G, et al. Activated carbon with high capacitance prepared by NaOH activation for supercapacitors[J]. Materials Chemistry and Physics, 2010, 124(1): 504-509.
    Zhao Q, Wang X, Wu C, et al. Supercapacitive performance of hierarchical porous carbon microspheres prepared by simple one-pot method[J]. Journal of Power Sources, 2014, 254(0): 10-17.
    Lozano-Castelló D, Cazorla-Amorós D, Linares-Solano A, et al. Influence of pore structure and surface chemistry on electric double layer capacitance in non-aqueous electrolyte[J]. Carbon, 2003, 41(9): 1765-1775.
    Lei Z, Liu Z, Wang H, et al. A high-energy-density supercapacitor with graphene-CMK-5 as the electrode and ionic liquid as the electrolyte[J]. Journal of Materials Chemistry A, 2013, 1(6): 2313-2321.
    Wu M, Wang Y, Wu W, et al. Preparation of functionalized water-soluble photoluminescent carbon quantum dots from petroleum coke[J]. Carbon, 2014, 78: 480-489.
    Fan L, Chen T, Song W, et al. High nitrogen-containing cotton derived 3D porous carbon frameworks for high-performance supercapacitors[J]. Scientific Reports, 2015, 5: 15388.
    Zhou J, Zhang Z, Xing W, et al. Nitrogen-doped hierarchical porous carbon materials prepared from meta-aminophenol formaldehyde resin for supercapacitor with high rate performance[J]. Electrochimica Acta, 2015, 153: 68-75.
    Seredych M, Hulicova-Jurcakova D, Lu G, et al. Surface functional groups of carbons and the effects of their chemical character, density and accessibility to ions on electrochemical performance[J]. Carbon, 2008, 46(11): 1475-1488.
    Pendashteh A, Mousavi M F, Rahmanifar M S. Fabrication of anchored copper oxide nanoparticles on graphene oxide nanosheets via an electrostatic coprecipitation and its application as supercapacitor[J]. Electrochimica Acta, 2013, 88: 347-357.
  • 加载中
图(1)
计量
  • 文章访问数:  475
  • HTML全文浏览量:  81
  • PDF下载量:  715
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-10
  • 录用日期:  2016-06-28
  • 修回日期:  2016-06-10
  • 刊出日期:  2016-06-28

目录

    /

    返回文章
    返回