留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯在电化学储能过程中理论研究进展

苏方远 谢莉婧 孙国华 孔庆强 李晓明 刘卓 陈成猛

苏方远, 谢莉婧, 孙国华, 孔庆强, 李晓明, 刘卓, 陈成猛. 石墨烯在电化学储能过程中理论研究进展. 新型炭材料, 2016, 31(4): 363-377.
引用本文: 苏方远, 谢莉婧, 孙国华, 孔庆强, 李晓明, 刘卓, 陈成猛. 石墨烯在电化学储能过程中理论研究进展. 新型炭材料, 2016, 31(4): 363-377.
SU Fang-yuan, XIE Li-jing, SUN Guo-hua, KONG Qing-qiang, LI Xiao-ming, LIU Zhuo, CHEN Cheng-meng. Theoretical research progress on the use of graphene in different electrochemical processes. New Carbon Mater., 2016, 31(4): 363-377.
Citation: SU Fang-yuan, XIE Li-jing, SUN Guo-hua, KONG Qing-qiang, LI Xiao-ming, LIU Zhuo, CHEN Cheng-meng. Theoretical research progress on the use of graphene in different electrochemical processes. New Carbon Mater., 2016, 31(4): 363-377.

石墨烯在电化学储能过程中理论研究进展

基金项目: 国家自然科学基金(51402325).
详细信息
    作者简介:

    苏方远,博士,助理研究员.E-mail:sufangyuan@sxicc.ac.cn

    通讯作者:

    陈成猛,副研究员.E-mail:ccm@sxicc.ac.cn

  • 中图分类号: TQ127.1+1

Theoretical research progress on the use of graphene in different electrochemical processes

Funds: National Natural Science Foundation of China(51402325).
  • 摘要: 本文对目前石墨烯在电化学储能过程中理论计算的研究进行系统整理,从石墨烯材料电子结构特征出发,对其在超级电容器、锂离子电池和氧还原过程中石墨烯起的作用进行综述,详细讨论了石墨烯在以上不同电化学环境中与物质的相互作用机制,为新型石墨烯基电化学储能器件的研究提供理论基础和研究思路。
  • Li A H, Liu J Q, Feng S Y. Applications of graphene based materials in energy and environmental Sscience[J]. Science of Advanced Materials, 2014, 6(2):209-234.
    Lu Y H, Huang Y, Zhang M J, et al. Nitrogen-doped graphene materials for supercapacitor applications[J]. Journal of Nanoscience and Nanotechnology, 2014, 14(2):1134-1144.
    Wu S P, Xu R, Lu M J, et al. Graphene-containing nanomaterials for lithium-ion batteries[J]. Advanced Energy Materials, 2015, 5(21):1500400.
    Higgins D, Zamani P, Yu A P, et al. The application of graphene and its composites in oxygen reduction electrocatalysis:A perspective and review of recent progress[J]. Energy & Environmental Science, 2016, 9(2):357-390.
    Chen K, Song S, Liu F, et al. Structural design of graphene for use in electrochemical energy storage devices[J]. Chemical Society Reviews, 2015, 44(17):6230-6257.
    Raccichini R, Varzi A, Passerini S, et al. The role of graphene for electrochemical energy storage[J]. Nature Material, 2015, 14(3):271-279.
    Lv W, Li Z J, Deng Y Q, et al. Graphene-based materials for electrochemical energy storage devices:Opportunities and challenges[J]. Energy Storage Materials, 2016, 2:107-138.
    ZHANG Qiang, CHENG Xin-bing, HHUANG Jia-qi, et al. Review of carbon materials for advanced lithium-sulfur batteries[J]. New Carbon Materials, 2014, 29(4):241-264. (张强, 程新兵, 黄佳琦, 等. 碳质材料在锂硫电池中的应用研究进展[J]. 新型炭材料, 2014, 29(4):241-264.)
    John D L, Castro L C, Pulfrey D L. Quantum capacitance in nanoscale device modeling[J]. Journal of Applied Physics, 2004, 96(9):5180-5184.
    Stoller M D, Magnuson C W, Zhu Y W, et al. Interfacial capacitance of single layer graphene[J]. Energy and Environmental Science, 2011, 4:4685-4689.
    Uesugi E, Goto H, Eguchi R, et al. Electric double-layer capacitance between an ionic liquid and few-layer graphene[J]. Scientific Reports, 2013, 3:1595-1601.
    Sharma R, Baik J H, Perera C J, et al. Anomalously large reactivity of single graphene layers and edges toward electron transfer chemistries[J]. Nano Letters, 2010, 10(2):398-405.
    Sharma R, Nair N, Strano M S. Structure-reactivity relationships for graphene nanoribbons[J]. The Journal of Physical Chemistry C, 2009, 113(33):14771-14777.
    Mccreery R L. Advanced carbon electrode materials for molecular electrochemistry[J]. Chemical Reviews, 2008, 108:2646-2687.
    Heller I, Kong J, Williams K A, et al. Electrochemistry at single-walled carbon nanotubes:The role of band structure and quantum capacitance[J]. Journal of the American Chemical Society, 2006, 128(22):7353-7359.
    Denis P A, Iribarne F. Comparative study of defect reactivity in graphene[J]. The Journal of Physical Chemistry C, 2013, 117(37):19048-19055.
    Banhart F, Kotakoski J, Krasheninnikov A V. Structural defects in graphene[J]. ACS Nano, 2011, 5(1):26-41.
    Meyer J C, Kisielowski C, Erni R, et al. Direct imaging of lattice stoms and topological defects in graphene membranes[J]. Nano Letters, 2008, 8(11):3582-3586.
    Ma J, Alfe'D, Michaelides, A, et al. Stone-wales defects in graphene and other planar sp2-bonded materials[J]. Physical Review B, 2009, 80(3):033407.
    Chen L, Hu H, Ouyang Y, et al. Atomic chemisorption on graphene with stone-thrower-wales defects[J]. Carbon, 2011, 49(10):3356-3361.
    Krasheninnikov A V, Lehtinen P O, Foster A S, et al. Bending the rules:Contrasting vacancy energetics and migration in graphite and carbon nanotubes[J]. Chemical Physics Letters, 2006, 418(1-3):132-136.
    Hou Z F, Wang X L, Ikeda T, et al. Electronic structure of N-doped graphene with native point defects[J]. Physical Review B, 2013, 87(16):165401.
    Lee G, Wang C Z, Yoon E, et al. Diffusion, coalescence, and reconstruction of vacancy defects in graphene layers[J]. Physical Review Letters, 2005, 95(20):205501-205508.
    Wu L, Hou T, Li Y, et al. First-principles study on migration and coalescence of point defects in monolayer graphene[J]. The Journal of Physical Chemistry C, 2013, 117(33):17066-17072.
    El-Barbary A A, Telling R H, Ewels C P, et al. Structure and energetics of the vacancy in graphite[J]. Physical Review B, 2003, 68(14):144107.
    Oubal M, Picaud S, Rayez M, et al. Structure and reactivity of carbon multivacancies in graphene[J]. Computational and Theoretical Chemistry, 2012, 990:159-166.
    Oleg V, Steven G. Topological defects in graphene:Dislocations and grain boundaries[J]. Physical Review B, 2010, 81(19):2498-2502.
    Andrey C, Jannik C, Gerardo A, et al. From graphene constrictions to single carbon chains[J]. New Journal of Physics, 2009, 11:083019.
    Wang H, Maiyalagan T, Wang X. Review on recent progress in nitrogen-doped graphene:Synthesis, characterization, and its potential applications[J]. ACS Catalysis, 2012, 2(5):781-794.
    Wang H, Xie M, Thia L, et al. Strategies on the design of nitrogen-doped graphene[J]. The Journal of Physical Chemistry Letters, 2014, 5(1):119-125.
    Guo B, Liu Q, Chen E, et al. Controllable N-doping of graphene[J]. Nano Letters, 2010, 10(12):4975-4980.
    Lin Y, Lin C, Chiu P. Controllable graphene N-doping with ammonia plasma[J]. Applied Physics Letters, 2010, 96(13):133110.
    Imamura G, Saiki K. UV-irradiation induced defect formation on graphene on metals[J]. Chemical Physics Letters, 2013, 587:56-60.
    Akada K, Terasawa T, Imamura G, et al. Control of work function of graphene by plasma assisted nitrogen doping[J]. Applied Physics Letters, 2014, 104(13):131602.
    Paek E, Pak A J, Kweon K E, et al. On the origin of the enhanced supercapacitor performance of nitrogen-doped graphene[J]. The Journal of Physical Chemistry C, 2013, 117(11):5610-5616.
    Hou Z F, Wang X L, Ikeda T, et al. Interplay between nitrogen dopants and native point defects in graphene[J]. Physical Review B, 2012, 85(16):165439.
    Hou Z, Shu D, Chai G, et al. Interplay between oxidized monovacancy and nitrogen doping in graphene[J]. The Journal of Physical Chemistry C, 2014, 118(34):19795-19805.
    Hou Z, Terakura K. Effect of nitrogen doping on the migration of the carbon adatom and monovacancy in graphene[J]. The Journal of Physical Chemistry C, 2015, 119(9):4922-4933.
    Ren X, Zhu J, Du F, et al. B-doped graphene as catalyst to improve charge rate of lithium-air battery[J]. The Journal of Physical Chemistry C, 2014, 118(39):22412-22418.
    Cueto M, Ocón P, Poyato J M L. Comparative study of oxygen reduction reaction mechanism on nitrogen-, phosphorus-, and boron-doped graphene surfaces for fuel cell applications[J]. The Journal of Physical Chemistry C, 2015, 119(4):2004-2009.
    Zhang L, Niu J, Li M, et al. Catalytic mechanisms of sulfur-doped graphene as efficient oxygen reduction reaction catalysts for fuel cells[J]. The Journal of Physical Chemistry C, 2014, 118(7):3545-3553.
    Paek E, Pak A J, Hwang G S. A computational study of the interfacial dtructure and capacitance of graphene in[BMIM] [PF6] ionic liquid[J]. Journal of The Electrochemical Society, 2013, 160(1):A1-A10.
    Pak A J, Paek E, Hwang G S. Tailoring the performance of graphene-based supercapacitors using topological defects:A theoretical assessment[J]. Carbon, 2014, 68:734-741.
    Yang G M, Zhang H Z, Fan X F, et al. Density functional theory calculations for the quantum capacitance performance of graphene-based electrode material[J]. The Journal of Physical Chemistry C, 2015, 119(12):6464-6470.
    Wood B C, Ogitsu T, Otani M, et al. First-principles-inspired design strategies for graphene-based supercapacitor electrodes[J]. The Journal of Physical Chemistry C, 2014, 118(1):4-15.
    Biener J, Stadermann M, Suss M, et al. Advanced carbon aerogels for energy applications[J]. Energy & Environmental Science, 2011, 4(3):656-667.
    Kim K, Lee Z, Malone B D, et al. Multiply folded graphene[J]. Physical Review B, 2011, 83(24):245433.
    Pak A J, Paek E, Hwang G S. Impact of graphene edges on enhancing the performance of electrochemical double layer capacitors[J]. The Journal of Physical Chemistry C, 2014, 118(38):21770-21777.
    Pi K, McCreary K M, Bao W, et al. Electronic doping and scattering by transition metals on graphene[J]. Physical Review B, 2009, 80:075406.
    Kim G, Jhi S, Lim S, et al. Effect of vacancy defects in graphene on metal anchoring and hydrogen adsorption[J]. Applied Physics Letters, 2009, 94:173102.
    Paek E, Pak A J, Hwang G S. Large capacitance enhancement induced by metal-doping in graphene-based supercapacitors:A first-principles-based assessment[J]. Acs Applied Materials & Interfaces, 2014, 6(15):12168-12176.
    Su F Y, You C H, He Y B, et al. Flexible and planar graphene conductive additives for lithium-ion batteries[J]. Journal of Materials Chemistry, 2010, 20(43):9644-9650.
    LI Yong, LU Xiao-hui, SU Fang-yuan, et al. A graphene/carbon black hybrid material:a novel binary conductive additive for lithium-ion batteries[J]. New Carbon Materials, 2015, 30(2):128-132. (李用, 吕小慧, 苏方远等. 石墨烯/炭黑杂化材料:新型、高效锂离子电池二元导电剂[J]. 新型炭材料, 2015, 30(2):128-132.)
    Mapasha R E, Chetty N. Ab initio studies of staggered Li adatoms on graphene[J]. Computational Materials Science, 2010, 49(4):787-791.
    Medeiros P V C, Mota F D B, Mascarenhas A J S, et al. Bonding character of lithium atoms adsorbed on a graphene layer[J]. Solid State Communications, 2011, 151(7):529-531.
    Zhou L, Hou Z F, Wu L. First-principles study of lithium adsorption and diffusion on graphene with point defects[J]. The Journal of Physical Chemistry C, 2012, 116(41):21780-21787.
    Zheng J, Ren Z, Guo P, et al. Diffusion of Li+ ion on graphene:A DFT study[J]. Applied Surface Science, 2011, 258(5):1651-1655.
    Wang X, Zeng Z, Ahn H, et al. First-principles study on the enhancement of lithium storage capacity in boron doped graphene[J]. Applied Physics Letters, 2009, 95(18):183103.
    Martinez J I, Cabria I, Lopez M J, et al. Adsorption of lithium on finite graphitic clusters[J]. Journal of Physical Chemistry C, 2009, 113(3):939-941.
    Uthaisar C, Barone V, Peralta J E. Lithium adsorption on zigzag graphene nanoribbons[J]. Journal of Applied Physics, 2009, 106(11):113715.
    Denis P A. Chemical reactivity of lithium doped monolayer and bilayer graphene[J]. Journal of Physical Chemistry C, 2011, 115(27):13392-13398.
    Gao S H, Ren Z Y, Wan L J, et al. Density functional theory prediction for diffusion of lithium on boron-doped graphene surface[J]. Applied Surface Science, 2011, 257(17):7443-7446.
    Krepel D, Hod O. Lithium adsorption on armchair graphene nanoribbons[J]. Surface Science, 2011, 605(17-18):1633-1642.
    Wu D H, Li Y F, Zhou Z. First-principles studies on doped graphene as anode materials in lithium-ion batteries[J]. Theoretical Chemistry Accounts, 2011, 130(2-3):209-213.
    Garay-Tapia A M, Romero A H, Barone V. Lithium adsorption on graphene:From isolated adatoms to metallic sheets[J]. Journal of Chemical Theory and Computation, 2012, 8(3):1064-1071.
    Sun C H, Searles D J. Lithium storage on graphdiyne predicted by DFT calculations[J]. Journal of Physical Chemistry C, 2012, 116(50):26222-26226.
    Zhou J J, Zhou W W, Guan C M, et al. First-principles study of lithium intercalated bilayer graphene[J]. Science China-Physics Mechanics & Astronomy, 2012, 55(8):1376-1382.
    Buldum A, Tetiker G. First-principles study of graphene-lithium structures for battery applications[J]. Journal of Applied Physics, 2013, 113(15):154312.
    Luo G X, Zhao J J, Wang B L. A theoretical evaluation of the effect of interlayer spacing and boron doping on lithium storage in graphite[J]. Computational Materials Science, 2013, 68:212-217.
    Lee E, Persson K A. Li absorption and intercalation in single layer graphene and few layer graphene by first principles[J]. Nano Letters, 2012, 12(9):4624-4628.
    Fan X F, Zheng W T, Kuo J L, et al. Adsorption of single Li and the formation of small Li clusters on graphene for the anode of Lithium-Ion batteries[J]. Acs Applied Materials & Interfaces, 2013, 5(16):7793-7797.
    Liu Y, Artyukhov V I, Liu M, et al. Feasibility of lithium storage on graphene and its derivatives[J]. J Phys Chem Lett, 2013, 4(10):1737-1742.
    Datta D, Li J W, Koratker N, et al. Enhanced lithiation in defective graphene[J]. Carbon, 2014, 80:305-310.
    Ma C C, Shao X H, Cao D P. Nitrogen-doped graphene nanosheets as anode materials for lithium ion batteries:a first-principles study[J]. Journal of Materials Chemistry, 2012, 22(18):8911-8915.
    Yildirim H, Kinaci A, Zhao Z J, et al. First-principles analysis of defect-mediated Li adsorption on graphene[J]. Acs Applied Materials & Interfaces, 2014, 6(23):21141-21150.
    Fan X, Zheng W T, Kuo J. Adsorption and diffusion of Li on pristine and defective graphene[J]. Acs Applied Materials & Interfaces, 2012, 4(5):2432-2438.
    Zhou L J, Hou Z F, Wu L M, et al. First-principles studies of lithium adsorption and diffusion on graphene with grain boundaries[J]. Journal of Physical Chemistry C, 2014, 118(48):28055-28062.
    Yao F, Gunes F, Ta H Q, et al. Diffusion mechanism of lithium ion through basal plane of layered graphene[J]. Journal of the American Chemical Society, 2012, 134(20):8646-8654.
    Zhou L, Hou Z F, Wu L, et al. First-principles studies of lithium adsorption and diffusion on graphene with grain boundaries[J]. The Journal of Physical Chemistry C, 2014, 118:28055-28062.
    Kattel S, Wang G. Reaction pathway for oxygen reduction on FeN4 embedded graphene[J]. The Journal of Physical Chemistry Letters, 2014, 5(3):452-456.
    Boukhvalov D W, Son Y. Oxygen reduction reactions on pure and nitrogen-doped graphene:a first-principles modeling[J]. Nanoscale, 2012, 4(2):417-420.
    Zhang L, Xia Z. Mechanisms of oxygen reduction reaction on nitrogen-doped graphene for fuel cells[J]. The Journal of Physical Chemistry C, 2011, 115(22):11170-11176.
    Zhang L, Niu J, Dai L, et al. Effect of microstructure of nitrogen-doped graphene on oxygen reduction activity in fuel cells[J]. Langmuir, 2012, 28(19):7542-7550.
    Jiao Y, Zheng Y, Jaroniec M, et al. Origin of the electrocatalytic oxygen reduction activity of graphene-based catalysts:A roadnnap to achieve the best performance[J]. Journal of the American Chemical Society, 2014, 136(11):4394-4403.
    Lim D, Negreira A S, Wilcox J. DFT Studies on the interaction of defective graphene-supported Fe and Al nanoparticles[J]. The Journal of Physical Chemistry C, 2011, 115(18):8961-8970.
    Lim D, Wilcox J. DFT-based study on oxygen adsorption on defective graphene-supported Pt nanoparticles[J]. The Journal of Physical Chemistry C, 2011, 115(46):22742-22747.
    Krasheninnikov A V, Lehtinen P O, Foster A S, et al. Embedding transition-metal atoms in graphene:Structure, bonding, and magnetism[J]. Physical Review Letters, 2009, 102(12):126807.
    Zheng Y, Xiao W, Cho M, et al. Density functional theory calculations for the oxygen dissociation on nitrogen and transition metal doped graphenes[J]. Chemical Physics Letters, 2013, 586:104-107.
    Groves M N, Chan A S W, Malardier-Jugroot C, et al. Improving platinum catalyst binding energy to graphene through nitrogen doping[J]. Chemical Physics Letters, 2009, 481(4-6):214-219.
    Yan H J, Xu B, Shi S Q, et al. First-principles study of the oxygen adsorption and dissociation on graphene and nitrogen doped graphene for Li-air batteries[J]. Journal of Applied Physics, 2012, 112(10):104316.
  • 加载中
图(1)
计量
  • 文章访问数:  753
  • HTML全文浏览量:  128
  • PDF下载量:  1038
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-26
  • 录用日期:  2016-08-29
  • 修回日期:  2016-07-30
  • 刊出日期:  2016-08-28

目录

    /

    返回文章
    返回