留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氢卤酸诱导石墨烯气凝胶组装体的制备

张旭 周颖 王春雷 邱介山

张旭, 周颖, 王春雷, 邱介山. 氢卤酸诱导石墨烯气凝胶组装体的制备. 新型炭材料, 2016, 31(4): 407-414.
引用本文: 张旭, 周颖, 王春雷, 邱介山. 氢卤酸诱导石墨烯气凝胶组装体的制备. 新型炭材料, 2016, 31(4): 407-414.
ZHANG Xu, ZHOU Ying, WANG Chun-lei, QIU Jie-shan. Hydrogen halide-promoted construction of 3D graphene aerogels. New Carbon Mater., 2016, 31(4): 407-414.
Citation: ZHANG Xu, ZHOU Ying, WANG Chun-lei, QIU Jie-shan. Hydrogen halide-promoted construction of 3D graphene aerogels. New Carbon Mater., 2016, 31(4): 407-414.

氢卤酸诱导石墨烯气凝胶组装体的制备

基金项目: 国家自然科学基金(21336001,21276045,21003016).
详细信息
    作者简介:

    张旭,讲师.E-mail:zhangxuwasd@126.com

    通讯作者:

    邱介山,教授.E-mail:jqiu@dlut.edu.cn

  • 中图分类号: TB383

Hydrogen halide-promoted construction of 3D graphene aerogels

Funds: National Natural Science Foundation of China(21336001,21276045,21003016).
  • 摘要: 以氧化石墨为前驱体,氢卤酸为诱导还原剂,采用化学还原法在温和条件下制备石墨烯气凝胶组装体。利用扫描电镜、X射线衍射、拉曼光谱、X射线光电子能谱及热重等分析手段对石墨烯气凝胶组装体的结构及性质进行表征,以研究氢卤酸的种类及浓度对石墨烯气凝胶的形成、结构及性质的影响。结果表明:相比于HBr和HCl,利用H+与I-的协同作用,HI能够有效的诱导石墨烯气凝胶组装体形成。相对于氧化石墨,所制备的石墨烯气凝胶的热稳定性和导电能力均得到了显著的提高。将石墨烯气凝胶作为超级电容器电极材料,表现出优异的电化学性能。
  • Allen M J, Tung V C, Kaner R B. Honeycomb carbon:A review of graphene[J]. Chemical Reviews, 2010, 110(1):132-145.
    Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887):385-388.
    Bolotin K I, Sikes K J, Jiang Z, et al. Ultrahigh electron mobility in suspended graphene[J]. Solid State Communications, 2008, 146(9-10):351-355.
    Sun H, Xu Z, Gao C. Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels[J]. Advanced Materials, 2013, 25(18):2554-2560.
    Hu H, Zhao Z B, Wan W B, et al. Ultralight and highly compressible graphene aerogels[J]. Advanced Materials, 2013, 25(15):2219-2223.
    Jung S M, Mafra D L, Lin C T, et al. Controlled porous structures of graphene aerogels and their effect on supercapacitor performance[J]. Nanoscale, 2015, 7(10):4386-4393.
    Xu Y X, Shen K S, Li C, et al. Self-assembled graphene hydrogel via a one-step hydrothermal process[J]. ACS Nano, 2010, 4(7):4324-4330.
    Sui Z Y, Meng Y N, Xiao P W, et al. Nitrogen-doped graphene aerogels as efficient supercapacitor electrodes and gas adsorbents[J]. ACS Applied Materials & Interfaces, 2015, 7(3):1431-1438.
    Bai H, Li C, Wang X, Shi G. A pH-sensitive graphene oxide composite hydrogel[J]. Chemical Communications, 2010, 46(14):2376.
    Huang Q, Tao F, Zou L, et al. One-step synthesis of Pt nanoparticles highly loaded on graphene aerogel as durable oxygen reduction electrocatalyst[J]. Electrochimica Acta, 2015, 152:140-145.
    Chen W, Yan L. In situ self-assembly of mild chemical reduction graphene for three-dimensional architectures[J]. Nanoscale, 2011, 3(8):3132-3137.
    Li J, Li J, Meng H, et al. Ultra-light, compressible and fire-resistant graphene aerogel as a highly efficient and recyclable absorbent for organic liquids[J]. Journal of Materials Chemistry A, 2014, 2(9):2934-2941.
    Tang Z, Shen S, Zhuang J, et al. Noble-metal-promoted three-dimensional macroassembly of single-layered graphene oxide[J]. Angewandte Chemie-International Edition, 2010, 49(27):4603-4607.
    Zhang X, Sui Z, Xu B, et al. Mechanically strong and highly conductive graphene aerogel and its use as electrodes for electrochemical power sources[J]. Journal of Materials Chemistry, 2011, 21(18):6494-6997.
    Bi H, Yin K, Xie X, et al. Low temperature casting of graphene with high compressive strength[J]. Advanced Materials, 2012, 24(37):5124-5129.
    Kovtyukhova N I, Ollivier P J, Martin B R, et al. Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations[J]. Chemistry of Materials, 1999, 11(3):771-778.
    Pei S, Zhao J, Du J, et al. Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids[J]. Carbon, 2010, 48(15):4466-4474.
    Chen Y, Zhang X, Zhang D, et al. High performance supercapacitors based on reduced graphene oxide in aqueous and ionic liquid electrolytes[J]. Carbon, 2011, 49(2):573-580.
    Stankovich S, Dikin D A, Piner R D, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J]. Carbon, 2007, 45(7):1558-1565.
    Liao K, Mittal A, Bose S, et al. Aqueous only route toward graphene from graphite oxide[J]. Acs Nano, 2011, 5(2):1253-1258.
    Liu X, Huang M, Ma H, et al. Preparation of a carbon-based solid acid catalyst by sulfonating activated carbon in a chemical reduction process[J]. Molecules, 2010, 15(10):7188-7196.
    Ferrari A C, Meyer J C, Scardaci V, et al. Raman spectrum of graphene and graphene layers[J]. Physical Review Letters, 2006, 97(18):187401-187404.
    Luo D, Zhang G, Liu J, et al. Evaluation criteria for reduced graphene Oxide[J]. Journal of Physical Chemistry C, 2011, 115(23):11327-11335.
    Chen M, Zhang C, Li X, et al. A one-step method for reduction and self-assembling of graphene oxide into reduced graphene oxide aerogels[J]. Journal of Materials Chemistry A, 2013, 1(8):2869-2877.
    Fan X M, Yu C, Ling Z, et al. Hydrothermal synthesis of phosphate-functionalized carbon nanotube-containing carbon composites for supercapacitors with highly stable performance[J]. ACS Applied Materials & Interfaces, 2013, 5(6):2104-2110.
  • 加载中
图(1)
计量
  • 文章访问数:  507
  • HTML全文浏览量:  88
  • PDF下载量:  604
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-28
  • 录用日期:  2016-08-29
  • 修回日期:  2016-03-28
  • 刊出日期:  2016-08-28

目录

    /

    返回文章
    返回