留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

酚醛树脂基泡沫炭的发泡行为及其孔结构控制

龚青 詹亮 张永正 王艳莉

龚青, 詹亮, 张永正, 王艳莉. 酚醛树脂基泡沫炭的发泡行为及其孔结构控制. 新型炭材料, 2016, 31(4): 445-450.
引用本文: 龚青, 詹亮, 张永正, 王艳莉. 酚醛树脂基泡沫炭的发泡行为及其孔结构控制. 新型炭材料, 2016, 31(4): 445-450.
GONG Qing, ZHAN Liang, ZHANG Yong-zheng, WANG Yan-li. Effects of heating rate on the foaming behavior and pore structure of carbon foams derived from phenol-formaldehyde resin. New Carbon Mater., 2016, 31(4): 445-450.
Citation: GONG Qing, ZHAN Liang, ZHANG Yong-zheng, WANG Yan-li. Effects of heating rate on the foaming behavior and pore structure of carbon foams derived from phenol-formaldehyde resin. New Carbon Mater., 2016, 31(4): 445-450.

酚醛树脂基泡沫炭的发泡行为及其孔结构控制

基金项目: 国家自然科学基金(51472086,51002051);上海市自然科学基金(12ZR1407200).
详细信息
    作者简介:

    龚青,硕士研究生.E-mail:gongqing2009038040@163.com

    通讯作者:

    詹亮,教授.E-mail:zhanliang@ecust.edu.cn

  • 中图分类号: TQ127.1+1

Effects of heating rate on the foaming behavior and pore structure of carbon foams derived from phenol-formaldehyde resin

Funds: National Natural Science Foundation of China(51472086,51002051);Natural Science Foundation of Shanghai City(12ZR1407200).
  • 摘要: 结合热塑性酚醛树脂的热失重和粘-温特性,研究了升温速率对其发泡行为及泡沫炭力学性能的影响。结果表明,热塑性酚醛树脂的发泡温区在200~300℃,并遵循热点成核发泡机制;300~600℃温区中产生的裂解气主要影响气泡的膨胀速度,进而影响泡沫炭的孔径及孔结构的均一性;以0.5℃/min升至240℃,再以3℃/min升至600℃,所制泡沫炭孔结构较为均一,其平均孔径、密度及压缩强度分别为300 μm、0.51 g/cm3和12.5 MPa。
  • Sanchez C J, Chung D D L. Thermomechanical behavior of a graphite foam[J]. Carbon, 2003, 41(6):1175-1180.
    Gallego N C, Klett J W. Carbon foams for thermal management[J]. Carbon, 2003, 41(7):1461-1466.
    Yu Q, Straatman A G, Thompson B E. Carbon-foam finned tubes in air-water heat exchangers[J]. Applied Thermal Engineering, 2006, 26(2):131-143.
    Min G, Zengmin S, Weidong C, et al. Anisotropy of mesophase pitch-derived carbon foams[J]. Carbon, 2007, 45(1):141-145.
    Chen C, Kennel E B, Stiller A H, et al. Carbon foam derived from various precursors[J]. Carbon, 2006, 44(8):1535-1543.
    Zhang C C, Wang C X, Zhan L, et al. Synthesis of carbon foam covered with carbon nanofibers as catalyst support for gas phase catalytic reactions[J]. Materials Letters, 2011, 65(12):1889-1891.
    李娟, 王灿, 张翠翠, 等. 中间相沥青的预氧化对石墨化泡沫炭微裂纹的影响[J]. 新型炭材料, 2010, 25(04):303-307. (LI Juan, WANG Can, ZHANG Cui-cui, et al. Effect of pre-oxidation on microcracks in graphite foams[J]. New Carbon Materials, 2010, 25(04):303-307.)
    Eksilioglu A, Gencay N, Yardim M F, et al. Mesophase AR pitch derived carbon foam:Effect of temperature, pressure and pressure release time[J]. Journal of Materials Science, 2006, 41(10):2743-2748.
    Fawcett W, Shetty D K. Effects of carbon nanofibers on cell morphology, thermal conductivity and crush strength of carbon foam[J]. Carbon, 2010, 48(1):68-80.
    Calvo M, Garcia R, Moinelo S R. Carbon foams from different coals[J]. Energy & Fuels, 2008, 22(5):3376-3383.
    Shafizadeh J E, Guionnet S, Tillman M S, et al. Synthesis and characterization of phenolic resole resins for composite applications[J]. Journal of Applied Polymer Science, 1999, 73(4):505-514.
    Yang J, Shen Z M, Xue R S, et al. Study of mesophase pitch-based graphite foam used as anodic materials in lithium ion rechargeable batteries[J]. Journal of Materials Science, 2005, 40(5):1285-1287.
    Lei S, Guo Q, Shi J, et al. Preparation of phenolic-based carbon foam with controllable pore structure and high compressive strength[J]. Carbon, 2010, 48(9):2644-2646.
    Klett J, Hardy R, Romine E, et al. High-thermal-conductivity, mesophase-pitch-derived carbon foams:effect of precursor on structure and properties[J]. Carbon, 2000, 38(7):953-973.
    Li S, Song Y, Song Y, et al. Carbon foams with high compressive strength derived from mixtures of mesocarbon microbeads and mesophase pitch[J]. Carbon, 2007, 45(10):2092-2097.
  • 加载中
图(1)
计量
  • 文章访问数:  672
  • HTML全文浏览量:  104
  • PDF下载量:  966
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-25
  • 录用日期:  2016-08-29
  • 修回日期:  2016-08-06
  • 刊出日期:  2016-08-28

目录

    /

    返回文章
    返回