留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

反相乳液法无乳化剂制备炭微米球及其电化学性能

冯翀 赵江红 韩佰欣 孙亚慧 王建龙 李开喜

冯翀, 赵江红, 韩佰欣, 孙亚慧, 王建龙, 李开喜. 反相乳液法无乳化剂制备炭微米球及其电化学性能. 新型炭材料, 2016, 31(6): 600-608.
引用本文: 冯翀, 赵江红, 韩佰欣, 孙亚慧, 王建龙, 李开喜. 反相乳液法无乳化剂制备炭微米球及其电化学性能. 新型炭材料, 2016, 31(6): 600-608.
FENG Chong, ZHAO Jiang-hong, HAN Bai-xin, SUN Ya-hui, WANG Jian-long, LI Kai-xi. Preparation of carbon microspheres by inverse emulsion polymerization and their electrochemical performance as electrode materials of supercapacitors. New Carbon Mater., 2016, 31(6): 600-608.
Citation: FENG Chong, ZHAO Jiang-hong, HAN Bai-xin, SUN Ya-hui, WANG Jian-long, LI Kai-xi. Preparation of carbon microspheres by inverse emulsion polymerization and their electrochemical performance as electrode materials of supercapacitors. New Carbon Mater., 2016, 31(6): 600-608.

反相乳液法无乳化剂制备炭微米球及其电化学性能

基金项目: 国家自然科学基金(51002166,51172251,51061130536);山西省国际合作项目(2013081016);山西省煤基科学技术项目(MD2014-09);国家自然科学基金-山西省联合基金(U1510204).
详细信息
    作者简介:

    冯翀,硕士研究生.E-mail:903843176@qq.com

    通讯作者:

    李开喜,博士,研究员.E-mail:likx@sxicc.ac.cn;赵江红,博士,副研究员.E-mail:zjh_sx@sxicc.ac.cn

  • 中图分类号: TQ127.1+1

Preparation of carbon microspheres by inverse emulsion polymerization and their electrochemical performance as electrode materials of supercapacitors

Funds: National Natural Science Foundation of China (51002166, 51172251, 51061130536); International Cooperation Project of the Shanxi Province (2013081016); Shanxi Province Coal-based Key Scientific and Technological Project (MD2014-09); National Natural Science Foundation of China-mutual Funds of Shanxi Province (U1510204).
  • 摘要: 以酚醛树脂的乙醇溶液为原料,导热油和硅油混合油为油相,在不添加任何乳化剂的情况下,采用反相乳液法制得酚醛树脂微米球。重点考察了合成条件对树脂成球的影响,并探讨了体系的成球机制。结果表明,引入黏度低、导热性能好、可与酚醛树脂形成强π-π相互作用的导热油对合成树脂微球起关键作用。混合油质量比、酚醛和乙醇配比及搅拌速度在较宽范围内变化时,制得的酚醛树脂微球经800℃炭化均能获得球形度良好的炭微米球。优化条件下(导热油和硅油质量比为4:1,乙醇和酚醛质量比为4:1,搅拌速度为2 000 r/min),可获得球形度好、尺寸分布较窄的炭微米球(5~20 μm)。该球经KOH活化后,当电流密度为1 A/g时,比电容可达206 F/g,电流密度为20 A/g时,比电容仍然保持在134 F/g。这些优异的电化学性质归因于炭球高的比表面积和合适的孔道结构。
  • SONG Tao, LIAO Jing-ming, XIAO Jun, et al. Effect of micropore and mesopore structure on CO2 adsorption by activated carbons from biomass[J]. New Carbon Materials, 2015, 30(2):156-166.
    Han W L, Tang Z C, Zhang P, et al. Fabrication of porous carbon spheres and as support for the application of low-temperature CO oxidation[J]. Applied Surface Science, 2015, 350:100-108.
    Ren S Z, Wang M, Jia C Y, et al. Fabrication of supercapacitors using carbon microspheres synthesized from resorcinol-formaldehyde resin[J]. Energy Technology, 2013, 1:332-337.
    Ma X M, Gan L H, Liu M X, et al. Mesoporous size controllable carbon microspheres and their electrochemical performances for super capacitor electrodes[J]. Journal of Materials Chemistry A, 2014, 2:8407-8415.
    Menéndez J A, Juárez-Pérez E J, Ruisánchez E, et al. A microwave-based method for the synthesis of carbon aerogel spheres[J]. Carbon, 2012, 50:3555-3560.
    Wickramaratne N P, Jaroniec M, et al. Activated carbon spheres for CO2 adsorption[J]. ACS Appl Mater Interfaces, 2013, 5:1849-1855.
    Wang H, Shi L Y, Yan T T, et al. Design of graphene-coated hollow mesoporous carbon spheres as high performance electrodes for capacitive deionization[J]. Journal of Materials Chemistry A, 2014, 2:4739-4750.
    Qiao Z A, Guo B K, Binder A J, et al. Controlled synthesis of mesoporous carbon nanostructures via a "silica-assisted" strategy[J]. Nano Letter, 2013, 13:207-212.
    Liu J, Wickramaratne N P, Qiao S Z, et al. Molecular-based design and emerging applications of nanoporous carbon spheres[J]. Nature Materials, 2015, 14:763-774.
    沈秋惠,闵洁,孙国瑞等.热固性酚醛树脂基微球的制备方法的研究[J]. 炭素, 2010, 04:28-32. (Shen Q H, Min J, Sun G R, et al. Study on the preparation method for thermosetting phenolic resin-based microsphere[J]. Carbon (China), 2010, 04:28-32.)
    Liu L, Liao L H, Meng Q H, et al. High performance graphene composite microsphere electrodes for capacitive deionization[J]. Carbon, 2015, 90:75-84.
    Tata A, Sokolowska K, Swider J, et al. Study of cellulolytic enzyme immobilization on copolymers of N-vinylformamide[J]. Spectrochim Acta A, 2015, 149:494-504.
    Horikawa T, Hayashi J, Muroyama K. Size control and characterization of spherical carbon aerogel particles from resorcinol-formaldehyde resin[J]. Carbon, 2004, 42(1):169-175.
    Shi D J, Gao Y, Sun L, et al. Superabsorbent poly(acrylamide-co-itaconic acid) hydrogel microspheres:Preparation, characterization and absorbency[J]. Polym Sci Ser, 2014, 56(3):275-282.
    Jiang L P, Liu P, Zhao S B. Magnetic ATP/FA/Poly(AA-co-AM) ternary nanocomposite microgel as selective adsorbent for removal of heavy metals from wastewater[J]. Colloid Surface A, 2015, 470:31-38.
    Benda D, Snuparek J, Cermak V. Inverse emulsion polymerization of acrylamide and salts of acrylic acid[J]. Eur Polym J, 1997, 33(8):1345-1352.
    Kiatkamjornwong S, Phunchareon P. Influence of reaction parameters on water absorption of neutralized poly(acrylic acid-co-acrylamide) synthesized by inverse suspension polymerization[J]. J Appl Polym Sci, 1999, 72(10):1349-1366.
    Buck S, Pennefather P S, Xue H Y, et al. Engineering lipobeads:Properties of the hydrogel core and the lipid bilayer shell[J]. Biomacromolecules, 2004, 5(6):2230-2237.
    Jiang L P, Liu P. Design of magnetic attapulgite/fly ash/poly(acrylic acid) ternary nanocomposite hydrogels and performance evaluation as selective adsorbent for Pb2+ Ion[J]. ACS Sustain Chem Eng, 2014, 2(7):1785-1794.
    Jiang L P, Liu P. Covalently cross-linked fly ash/poly(acrylic acid-co-acrylamide) composite microgels as novel magnetic selective adsorbent for Pb2+ ion[J]. J Colloid Interf Sci, 2014, 426:64-71.
    Jahanzad F, Sajjadi S, Brooks B W. Comparative study of particle size in suspension polymerization and corresponding monomer-water dispersion[J]. Ind Eng Chem Res, 2005, 44(11):4112-4119.
    Figueroa J D, Fout T, Plasynski S, et al. Advances in CO2 capture technology-the US Department of Energy's Carbon Sequestration Program[J]. International journal of greenhouse gas control, 2008, 2(1):9-20.
    Wang X Q, Lee J S, Tsouris C, et al. Preparation of activated mesoporous carbons for electrosorption of ions from aqueous solutions[J]. J Mater Chem, 2010, 20(22):4602-4608.
    Raymundo-Pinero E, Kierzek K, Machnikowski J, et al. Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes[J]. Carbon, 2006, 44(12):2498-2507.
    Chmiola J, Yushin G, Gogotsi Y, et al. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer[J]. Science, 2006, 313:1760-1763.
  • 加载中
图(1)
计量
  • 文章访问数:  451
  • HTML全文浏览量:  71
  • PDF下载量:  639
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-06
  • 录用日期:  2016-12-26
  • 修回日期:  2016-12-02
  • 刊出日期:  2016-12-28

目录

    /

    返回文章
    返回