留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含空位缺陷单壁碳纳米管断裂行为的有限元模拟

张续 齐乐华 舒扬 付前刚 李贺军

张续, 齐乐华, 舒扬, 付前刚, 李贺军. 含空位缺陷单壁碳纳米管断裂行为的有限元模拟. 新型炭材料, 2016, 31(6): 646-650.
引用本文: 张续, 齐乐华, 舒扬, 付前刚, 李贺军. 含空位缺陷单壁碳纳米管断裂行为的有限元模拟. 新型炭材料, 2016, 31(6): 646-650.
ZHANG Xu, QI Le-hua, SHU Yang, FU Qian-gang, LI He-jun. Simulation of the fracture behavior of single-walled carbon nanotubes with a single atom vacancy by the finite element method. New Carbon Mater., 2016, 31(6): 646-650.
Citation: ZHANG Xu, QI Le-hua, SHU Yang, FU Qian-gang, LI He-jun. Simulation of the fracture behavior of single-walled carbon nanotubes with a single atom vacancy by the finite element method. New Carbon Mater., 2016, 31(6): 646-650.

含空位缺陷单壁碳纳米管断裂行为的有限元模拟

基金项目: 国家自然科学基金(51275417,51221001).
详细信息
    作者简介:

    张续,硕士研究生.E-mail:zhangxu7513@163.com

    通讯作者:

    齐乐华,博士,教授.E-mail:qilehua@nwpu.end.cn

  • 中图分类号: TB332

Simulation of the fracture behavior of single-walled carbon nanotubes with a single atom vacancy by the finite element method

Funds: National Natural Science Foundation of China (51275417, 51221001).
  • 摘要: 提出了碳碳键的断裂准则,建立了含空位缺陷碳纳米管的有限元模型,基于此断裂准则采用有限元方法对单壁碳纳米管的断裂行为进行了模拟研究,计算得到了碳纳米管的抗拉强度和极限应变,并研究了单原子空位缺陷对碳纳米管抗拉强度和极限应变的影响。结果表明理想单壁碳纳米管的抗拉强度约为100 GPa,极限应变约为20%。单原子空位缺陷显著降低了碳纳米管的抗拉强度和极限应变,使抗拉强度降低了20%~30%,极限应变降低了12%~18%,这也正是碳纳米管极限强度的实验结果远低于理论预测结果的原因。
  • Ogata S, Shibutani Y. Ideal tensile strength and band gap of single-walled carbon nanotubes[J]. Phys Rev B, 2003, 68(16):165409.
    Zhao Q Z, Nardelli M B, Bernholc J. Ultimate strength of carbon nanotubes:A theoretical study[J]. PHYSICAL REVIEW B, 2002, 65:144105.
    Mielke S L, Troya D, Zhang S L, et al. The role of vacancy defects and holes in the fracture of carbon nanotubes[J]. Chemical Physics Letter, 2003, 382:413-420.
    Talukdar K, Agrawala R, Mitra A K. Dependence of mechanical characteristics and the fracture and buckling behavior of single-walled carbon nanotubes on their geometry[J]. New Carbon Materials, 2011, 26(6):408-416.
    Zu M, Li Q W, Zhu Y T, et al. The effective interfacial shear strength of carbon nanotube fibers in an epoxy matrix characterized by a microdroplet test[J]. Carbon, 2012, 50:1271-1279.
    Meo M, Rossi M. A molecular-mechanics based finite element model for strength prediction of single wall carbon nanotubes[J]. Materials Science and Engineering A, 2007, 454-455:170-177.
    Yu M F, Lourie O, Dyer M J, et al. Strength and breaking mechanism of multi-walled carbon nanotubes under tensile Load[J]. Science, 2000, 287:637-640.
    孙振锋, 齐乐华, 舒扬, 等. 有限元方法的小管径单壁碳纳米管杨氏模量预测[J]. 西安交通大学学报, 2007, 41(9):1066-1069. (SUN Zheng-feng, QI Le-hua, SHU Yang, et al. Prediction of young's modulus of small diameter single-wall carbon nanotube with finite element method[J]. Lournal of Xi'an Jiao Tong University, 2007, 41(9):1066-1069.)
    Li C Y, Chou T W. A structural mechanics approach for the analysis of carbon nanotubes[J]. International Journal of Solids and Structures, 2003, 40:2487-2499.
    Girifalco L A, Weizer V G. Application of the Morse Potential Function to Cubic Metals[J]. Physical Review, 1959, 114(3):687-690.
    Belytschko T, Xiao S P, Schatz G C, et al. Atomistic simulations of nanotube fracture[J]. Physical Review B, 2002, 65:235430.
    Lu A G, Pan B C. Nature of single vacancy in achiral carbon nanotubes[J]. Physical Review B Letters, 2004, 92(10):105504.
    Paul S, Samdarshi S K. A green precursor for carbon nanotube synthesis[J]. New Carbon Materials, 2011, 26(2):85-88.
    Dutta D, Dubey R, Yadav J, et al. Preparation of spongy microspheres consisting of functionalized multiwalled carbon nanotubes[J]. New Carbon Materials, 201126(2):98-102.
    Arash B, Ansari R. Evaluation of nonlocal parameter in the vibrations of single-walled carbon nanotubes with initial strain[J]. Physica E, 2010, 42:2058-2064.
  • 加载中
图(1)
计量
  • 文章访问数:  456
  • HTML全文浏览量:  81
  • PDF下载量:  628
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-20
  • 录用日期:  2016-12-26
  • 修回日期:  2016-12-06
  • 刊出日期:  2016-12-28

目录

    /

    返回文章
    返回