留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

长寿命及高功率锂离子电池用多孔石墨烯/聚偏氟乙烯功能层复合隔膜

步爱秀 谭勇 方若翩 李峰 裴嵩峰 任文才

步爱秀, 谭勇, 方若翩, 李峰, 裴嵩峰, 任文才. 长寿命及高功率锂离子电池用多孔石墨烯/聚偏氟乙烯功能层复合隔膜. 新型炭材料, 2017, 32(1): 63-70.
引用本文: 步爱秀, 谭勇, 方若翩, 李峰, 裴嵩峰, 任文才. 长寿命及高功率锂离子电池用多孔石墨烯/聚偏氟乙烯功能层复合隔膜. 新型炭材料, 2017, 32(1): 63-70.
BU Ai-xiu, TAN Yong, FANG Ruo-pian, LI Feng, PEI Song-feng, REN Wen-cai. A graphene/PVDF/PP multilayer composite separator for long-life and high power lithium-ion batteries. New Carbon Mater., 2017, 32(1): 63-70.
Citation: BU Ai-xiu, TAN Yong, FANG Ruo-pian, LI Feng, PEI Song-feng, REN Wen-cai. A graphene/PVDF/PP multilayer composite separator for long-life and high power lithium-ion batteries. New Carbon Mater., 2017, 32(1): 63-70.

长寿命及高功率锂离子电池用多孔石墨烯/聚偏氟乙烯功能层复合隔膜

详细信息
    通讯作者:

    裴嵩峰.E-mail:sfpei@imr.ac.cn;谭勇.E-mail:tanyong@126.com

  • 中图分类号: TB332

A graphene/PVDF/PP multilayer composite separator for long-life and high power lithium-ion batteries

  • 摘要: 隔膜是锂离子电池的重要组成部分,对隔膜进行材料及结构的优化可以提高锂离子电池的性能。通过在普通商用聚丙烯(PP)隔膜表面构建多孔石墨烯/聚偏氟乙烯功能层的方式获得了复合隔膜材料,通过涂布及常温液相处理的方法调控涂层的孔隙结构,使复合隔膜对电解液的吸附性能明显提高,功能层使复合隔膜具有优异的离子透过性和单侧(石墨烯层)导电性。与采用普通聚丙烯隔膜相比,功能层复合隔膜在低倍率(0.5 C)下的电极材料容量发挥相当。而在高倍率(5 C)下,功能层复合隔膜下,电池容量发挥非常突出,并且600次循环后的容量保持率接近100%,而采用常规PP隔膜,电池材料则容量快速衰减失效。
  • Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367.
    Hassoun J, Scrosati B. Moving to a solid-state configuration: A valid approach to making lithium-sulfur batteries viable for practical applications[J]. Advanced Materials, 2010, 22(45): 5198-5201.
    Hu Y S, Demir-Cakan R, Titirici M M, et al. Superior storage performance of a Si@SiOx/C nanocomposite as anode material for lithium-ion batteries[J]. Angewandte Chemie International Edition, 2008, 47(9): 1645-1649.
    Hassoun J, Panero S, Reale P, et al. A new, safe, high-rate and high-energy polymer lithium-ion battery[J]. Advanced Materials, 2009, 21(47): 4807-4810.
    Wu Z S, Ren W, Xu L, et al. Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries[J]. ACS Nano, 2011, 5(7): 5463-5471.
    Jung H G, Myung S T, Yoon C S, et al. Microscale spherical carbon-coated Li4Ti5O12 as ultra high power anode material for lithium batteries[J]. Energy & Environmental Science, 2011, 4(4): 1345-1351.
    Zhong Y, Yang M, Zhou X, et al. Orderly packed anodes for high-power lithium-ion batteries with super-long cycle life: Rational design of MnCO3/large-area graphene composites[J]. Advanced Materials, 2015, 27(5): 806-812.
    Li F S, Wu Y S, Chou J, et al. A mechanically robust and highly ion-conductive polymer-blend coating for high-power and long-life lithium-ion battery anodes[J]. Advanced Materials, 2015, 27(1): 130-137.
    Lee H, Yanilmaz M, Toprakci O, et al. A review of recent developments in membrane separators for rechargeable lithium-ion batteries[J]. Energy & Environmental Science, 2014,7(12): 3857-3886.
    Costa C M, Silva M M, Lanceros-Mendez S. Battery separators based on vinylidene fluoride (VDF) polymers and copolymers for lithium ion battery applications[J]. RSC Advances, 2013, 3(29): 11404-11417.
    Xu Q, Kong Q, Liu Z, et al. Polydopamine-coated cellulose microfibrillated membrane as high performance lithium-ion battery separator[J]. RSC Advances, 2014, 4(16): 7845-7850.
    Xia M, Liu Q, Zhou Z, et al. A novel hierarchically structured and highly hydrophilic poly(vinyl alcohol-co-ethylene)/poly(ethylene terephthalate) nanoporous membrane for lithium-ion battery separator[J]. Journal of Power Sources, 2014, 266: 29-35.
    Guan H Y, Lian F, Ren Y, et al. Comparative study of different membranes as separators for rechargeable lithium-ion batteries[J]. International Journal of Minerals, Metallurgy, and Materials, 2013, 20(6): 598-603.
    Wang D, Zhao Z, Yu L, et al. Polydopamine hydrophilic modification of polypropylene separator for lithium ion battery[J]. Journal of Applied Polymer Science, 2014,131(15): 4401-4404.
    Bouchet R, Maria S, Meziane R, et al. Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries[J]. Nat Mater, 2013, 12(5): 452-457.
    Zhu Y, Xiao S, Shi Y, et al. A trilayer poly(vinylidene fluoride)/polyborate/poly(vinylidene fluoride) gel polymer electrolyte with good performance for lithium ion batteries[J]. Journal of Materials Chemistry A, 2013, 1(26): 7790-7797.
    Hao J, Lei G, Li Z, et al. A novel polyethylene terephthalate nonwoven separator based on electrospinning technique for lithium ion battery[J]. Journal of Membrane Science. 2013, 428: 11-16.
    Seino Y, Ota T, Takada K, et al. A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries[J]. Energy & Environmental Science, 2014, 7(2): 627-31.
    Zhu Y, Wang F, Liu L, et al. Composite of a nonwoven fabric with poly(vinylidene fluoride) as a gel membrane of high safety for lithium ion battery[J]. Energy & Environmental Science. 2013, 6(2): 618-24.
    Rao M, Geng X, Li X, et al. Lithium-sulfur cell with combining carbon nanofibers-sulfur cathode and gel polymer electrolyte[J]. Journal of Power Sources, 2012, 212: 179-185.
    Kim K J, Kim J H, Park M S, et al. Enhancement of electrochemical and thermal properties of polyethylene separators coated with polyvinylidene fluoride-hexafluoropropylene co-polymer for Li-ion batteries[J]. Journal of Power Sources. 2012, 198: 298-302.
    Shin W K, Kim D W. High performance ceramic-coated separators prepared with lithium ion-containing SiO2 particles for lithium-ion batteries[J]. Journal of Power Sources, 2013, 226: 54-60.
    Yang P, Zhang P, Shi C, et al. The functional separator coated with core-shell structured silica-poly(methyl methacrylate) sub-microspheres for lithium-ion batteries[J]. Journal of Membrane Science, 2015,474: 148-155.
    Li H, Zhang H, Liang Z-Y, et al. Preparation and properties of poly (vinylidene fluoride)/poly(dimethylsiloxane) graft (poly(propylene oxide)-block-poly(ethylene oxide)) blend porous separators and corresponding electrolytes[J]. Electrochimica Acta, 2014,116: 413-420.
    Kim J Y, Lee Y, Lim D Y. Plasma-modified polyethylene membrane as a separator for lithium-ion polymer battery[J]. Electrochimica Acta, 2009, 54(14): 3714-3719.
    Shi J L, Fang L F, Li H, et al. Enhanced performance of modified HDPE separators generated from surface enrichment of polyether chains for lithium ion secondary battery[J]. Journal of Membrane Science, 2013, 429: 355-363.
    Ryou M H, Lee Y M, Park J K, et al. Mussel-inspired polydopamine-treated polyethylene separators for high-power Li-ion batteries[J]. Advanced Materials, 2011, 23(27): 3066-3070.
    Zhou G, Li L, Wang D W, et al. A flexible sulfur-graphene-polypropylene separator integrated electrode for advanced Li-S batteries[J]. Advanced Materials, 2015, 27(4): 641-647.
    Fang R, Zhou G, Pei S, et al. Localized polyselenides in a graphene-coated polymer separator for high rate and ultralong life lithium-selenium batteries[J]. Chemical Communications, 2015, 51(17): 3667-3670.
    Costa C M, Gomez Ribelles J L, Lanceros-Méndez S, et al. Poly(vinylidene fluoride)-based, co-polymer separator electrolyte membranes for lithium-ion battery systems[J]. Journal of Power Sources, 2014, 245: 779-786.
    Zhou C, Wang Z, Liang Y, et al. Study on the control of pore sizes of membranes using chemical methods Part II. Optimization factors for preparation of membranes[J]. Desalination, 2008, 225(1-3): 123-38.
    Wei H, Ma J, Li B, Zuo Y, Xia D. Enhanced cycle performance of lithium-sulfur batteries using a separator modified with a PVDF-C layer[J]. ACS Applied Materials & Interfaces, 2014, 6(22): 20276-20281.
    Sukitpaneenit P, Chung T S. Molecular elucidation of morphology and mechanical properties of PVDF hollow fiber membranes from aspects of phase inversion, crystallization and rheology[J]. Journal of Membrane Science, 2009, 340(1-2): 192-205.
    Ishigami T, Nakatsuka K, Ohmukai Y, et al. Solidification characteristics of polymer solution during polyvinylidene fluoride membrane preparation by nonsolvent-induced phase separation[J]. Journal of Membrane Science, 2013, 438: 77-82.
    Yang W, He W, Zhang F, et al. Single-step fabrication using a phase inversion method of poly(vinylidene fluoride) (PVDF) activated carbon air cathodes for microbial fuel cells[J]. Environmental Science & Technology Letters, 2014, 1(10): 416-420.
  • 加载中
图(1)
计量
  • 文章访问数:  1006
  • HTML全文浏览量:  317
  • PDF下载量:  860
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-20
  • 录用日期:  2017-02-25
  • 修回日期:  2016-12-30
  • 刊出日期:  2017-02-28

目录

    /

    返回文章
    返回