留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超级电容器电极材料与电解液的研究进展

焦琛 张卫珂 苏方远 杨宏艳 刘瑞祥 陈成猛

焦琛, 张卫珂, 苏方远, 杨宏艳, 刘瑞祥, 陈成猛. 超级电容器电极材料与电解液的研究进展. 新型炭材料, 2017, 32(2): 106-115.
引用本文: 焦琛, 张卫珂, 苏方远, 杨宏艳, 刘瑞祥, 陈成猛. 超级电容器电极材料与电解液的研究进展. 新型炭材料, 2017, 32(2): 106-115.
JIAO Chen, ZHANG Wei-ke, SU Fang-yuan, YANG Hong-yan, LIU Rui-xiang, CHEN Cheng-meng. Research progress on electrode materials and electrolytes for supercapacitors. New Carbon Mater., 2017, 32(2): 106-115.
Citation: JIAO Chen, ZHANG Wei-ke, SU Fang-yuan, YANG Hong-yan, LIU Rui-xiang, CHEN Cheng-meng. Research progress on electrode materials and electrolytes for supercapacitors. New Carbon Mater., 2017, 32(2): 106-115.

超级电容器电极材料与电解液的研究进展

基金项目: 山西省自然科学基金(2015021062).
详细信息
    通讯作者:

    张卫珂,博士.副教授.E-mail:zhangweike@tyut.edu.cn;苏方远,博士.助理研究员.E-mail:sufangyuan@sxicc.ac.cn

  • 中图分类号: TM53

Research progress on electrode materials and electrolytes for supercapacitors

Funds: Natural Science Foundation of Shanxi Province, China (2015021062).
  • 摘要: 超级电容器具有高功率密度、长循环寿命、良好的低温使用性能和安全性的优点,已经广泛应用到电子产品、能量回收和储能等领域。电极材料和电解液是决定超级电容器性能的两大关键因素,超级电容器常用的电极材料包括碳质材料(活性炭、碳纳米管、石墨烯、炭纤维、纳米洋葱碳等)、金属氧化物(金属氢氧化物)、导电聚合物及复合材料等;电解液主要有水系电解液、有机系电解液与离子液体。本文综述了超级电容器电极材料与电解液的研究现状,详细介绍了电极材料、电解液的性能及优缺点,并对新型电极材料和电解液的研究趋势提出展望。
  • Zhang L L, Zhao X S. Carbon-based materials as supercapacitor electrodes[J]. Chem Soc Rev, 2009, 38(9): 2520-2531.
    Simon P, Gogotsi Y. Materials for electrochemical capacitors[J]. Nat Mater, 2008, 7(11): 845-854.
    Li Y F, Liu Y Z, Zhang W K, et al. Green synthesis of reduced graphene oxide paper using Zn powder for supercapacitors[J]. Materials Letters, 2015, 157: 273-276.
    Geim A K, Novoselov K S. The rise of graphene[J]. Nat Mater, 2007, 6(3): 183-191.
    Raymundo-Pinero E, Azais P, Cacciaguerra T, et al. KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organisation[J]. Carbon, 2005, 43(4): 786-795.
    Peng C, Yan X B, Wang R T, et al. Promising activated carbons derived from waste tea-leaves and their application in high performance supercapacitors electrodes[J]. Electrochim Acta, 2013, 87(1): 401-408.
    郑冬芳, 贾梦秋, 徐 斌, 等. 高性能超级电容器用高比表面积层次孔结构炭材料的简便制备[J]. 新型炭材料, 2013, 28(2): 151-155. (ZHENG Dong-fang, JIA Meng-qiu, XU Bin, et al. The simple preparation of a hierarchical porous carbon with high surface area for high performance supercapacitors[J]. New Carbon Materials, 2013, 28(2): 151-155.)
    Teo E Y L, Muniandy L, Ng E P, et al. High surface area activated carbon from rice husk as a high performance supercapacitor electrode[J]. Electrochim Acta, 2016, 192: 110-119.
    Huang K J,Wang L,Zhang J Z,et al. One-step preparation of layered molybdenum disulfide/multi-walled carbon nanotube composites for enhanced performance supercapacitor[J]. Energy, 2014, 67(1): 234-240.
    Wang Y, Shi Z Q, Huang Y, et al. Supercapacitor devices based on graphene materials[J]. J Phys Chem C, 2009, 113(30): 13103-13107.
    Chen C M, Zhang Q, Yang M G, et al. Structural evolution during annealing of thermally reduced graphene nanosheets for application in supercapacitors[J]. Carbon, 2012, 50(10): 3572-3584.
    Kong Q Q, Chen C M, Zhang Q, et al. Small particles of chemically-reduced graphene with improved electrochemical capacity[J]. J Phys Chem C, 2013, 117(30): 15496-15504.
    Hsu Y H, Lai C C, Ho C L, et al. Preparation of interconnected carbon nanofibers as electrodes for supercapacitors[J]. Electrochim Acta, 2014, 127(1): 369-376.
    Ma C, Song Y, Shi J L, et al. Preparation and one-step activation of microporous carbon nanofibers for use as supercapacitor electrodes[J]. Carbon, 2013, 51(1): 290-300.
    Gao Y, Zhou Y S, Qian M, et al. Chemical activation of carbon nano-onions for high-rate supercapacitor electrodes[J]. Carbon, 2013, 51(1): 52-58.
    Hu C C, Chang K S, Lin M C, et al. Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors[J]. Nano Lett, 2006, 6(12): 2690-2695.
    Chang K H, Hu C C, Chou C Y. Textural and pseudocapacitive characteristics of sol-gel derived RuO2·xH(2)O: Hydrothermal annealing vs. annealing in air[J]. Electrochim Acta, 2009, 54(3): 978-983.
    Wang Y T, Lu A H, Zhang H L, et al. Synthesis of nanostructured mesoporous manganese oxides with three-dimensional frameworks and their application in supercapacitors[J]. J Phys Chem C, 2011, 115(13): 5413-5421.
    Kim S I, Lee J S, Ahn H J, et al. Facile route to an efficient NiO supercapacitor with a three-dimensional nanonetwork morphology[J]. ACS Appl Mater Inter, 2013, 5(5): 1596-1603.
    Xia X, Tu J, Zhang Y, et al. Freestanding Co3O4 nanowire array for high performance supercapacitors[J]. RSC Advances, 2012, 2(5): 1835-1841.
    Pu J, Cui F, Chu S, et al. Preparation and electrochemical characterization of hollow hexagonal NiCo2S4 nanoplates as pseudocapacitor materials[J]. ACS Sustain Chem Eng, 2014, 2(4): 809-815.
    Ghennatian H R, Mousavi M F, Kazemi S H, et al. Electrochemical investigations of self-doped polyaniline nanofibers as a new electroactive material for high performance redox supercapacitor[J]. Syn Metals, 2009, 159(17-18): 1717-1722.
    Sharma R K, Rastogi A C, Desu S B. Pulse polymerized polypyrrole electrodes for high energy density electrochemical supercapacitor[J]. Electrochem Commun, 2008, 10(2): 268-272.
    Zhou C, Zhang Y, Li Y, et al. Construction of high-capacitance 3D CoO@polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor[J]. Nano Lett, 2013, 13(5): 2078-2085.
    Plonska-Brzezinska M E, Julita M, Barbara P, et al. Preparation and characterization of composites that contain small carbon nano-onions and conducting polyaniline[J]. Chem Eur J, 2012,18(9): 2600-2608.
    Huq M M, Hsieh C T, Ho C Y. Preparation of carbon nanotube-activated carbon hybrid electrodes by electrophoretic deposition for supercapacitor applications[J]. Diam Relat Mater, 2015, 62: 58-64.
    王 琴, 李建玲, 高 飞, 等. 超级电容器用聚苯胺/活性炭复合电极的研究[J]. 新型炭材料, 2008, 23(3): 275-280. (WANG Qin, LI Jian-Ling, GAO Fei, et al. Activated carbon coated with polyaniline as an electrode material in supercapacitors[J]. New Carbon Materials, 2008, 23(3): 275-280.)
    Xie L J, Su F Y, Xie L F, et al. Self-assembled 3D graphene-based aerogel with Co3O4 nanoparticles as high-performance asymmetric supercapacitor electrode[J]. Chem Sus Chem, 2015, 8(17): 2917-2926.
    Xu Y, Wang L, Cao P, et al. Mesoporous composite nickel cobalt oxide/graphene oxide synthesized via a template-assistant co-precipitation route as electrode material for supercapacitors[J]. J Power Sources, 2016, 306: 742-752.
    Galin'ski M, Lewandowski A, Stepniak I. Ionic liquids as electrolytes[J]. Electrochim Acta, 2006, 51(26): 5567-5580.
    Jin Z, Yan X D, Yu Y H, et al. Sustainable activated carbon fibers from liquefied wood with controllable porosity for high-performance supercapacitors[J]. J Mater Chem A, 2014, 2(30): 11706-11715.
    Jimenez-Cordero D, Heras F, Gilarranz M, et al. Grape seed carbons for studying the influence of texture on supercapacitor behaviour in aqueous electrolytes[J]. Carbon, 2014, 71(7): 127-138.
    Torchala K, Kierzek K, Machnikowski J. Capacitance behavior of KOH activated mesocarbon microbeads in different aqueous electrolytes[J]. Electrochim Acta, 2012, 86(4): 260-267.
    Sun S J, Song J, Shan Z Q, et al.Electrochemical properties of a low molecular weight gel electrolyte for supercapacitor[J]. J Electroanal Chem, 2012, 676(1): 1-5.
    Zhao L, Qiu Y, Yu J, et al. Carbon nanofibers with radially grown graphene sheets derived from electrospinning for aqueous supercapacitors with high working voltage and energy density[J]. Nanoscale, 2013, 5(11): 4902-4909.
    Demarconnay L, Raymundo-Piñero E, Béguin F. A symmetric carbon/carbon supercapacitor operating at 1.6 V by using a neutral aqueous solution[J]. Electrochem Commun, 2012, 12(10): 1275-1278.
    Catalog Handbook of Fine Chemicals[M]. Aldrich Chemical Company, Gillingham, Kent, 1993.
    Ue M, Ida K, Mori S. Electrochemical properties of organic liquid electrolytes based on quaternary onium salts for electrical double-layer capacitors[J]. J Electrochem Soc, 1994, 141(11): 2989-2996.
    Coetzee J E. Commission on Electroanalytical Chemistry International Union of Pure and Applied Chemistry. Recommended Methods for Purification of Solvents and Tests for Impurities[M]. Pergamon Press, New York, 1982.
    Barthel J, Gores H J, Schmeer G et al. Nonaqueous Electrolyte Solutions in Chemistry and Modern Technology[M]. Springer, Berlin, Heidelberg, 1983.
    Yu X W, Wang J, Wang C L, et al. A novel electrolyte used in high working voltage application for electrical double-layer capacitor using spiro-(1,1')-bipyrrolidinium tetrafluoroborate in mixtures solvents[J]. Electrochim Acta, 2015, 182: 1166-1174.
    Shi Z, Yu X W, Wang J, et al. Excellent low temperature performance electrolyte of spiro-(1,1’)-bipyrrolidinium tetrafluoroborate by tunable mixtures solvents for electric double layer capacitor[J]. Electrochim Acta, 2015, 174: 215-220.
    Lai Y Q, Chen X, Zhang Z, et al. Tetraethylammonium difluoro (oxalato) borate as electrolyte salt for electrochemical double-layer capacitors[J]. Electrochim Acta, 2011, 56(18): 6426-6430.
    Zhou H M, Sun W J, Li J. Preparation of spiro-type quaternary ammonium salt via economical and efficient synthetic route as electrolyte for electric double-layer capacitor[J]. J Cent South Univ, 2015, 22(7): 2435-2439.
    Nono Y, Kouzu M, Takei K, et al. EDLC performance of various activated carbons in spiro-type quaternary ammonium salt electrolyte solutions[J]. Electrochemistry, 2010, 78(5): 336-338.
    Yu H, Wu J, Fan L, et al. An efficient redox-mediated organic electrolyte for high-energy supercapacitor[J]. J Power Sources, 2014, 248(4): 1123-1126.
    Orita A, Kamijima K, Yoshida M, et al. Application of sulfonium-, thiophenium-, and thioxonium-based salts as electric double-layer capacitor electrolytes[J]. J Power Sources, 2010, 195(19): 6970-6976.
    Lewandowski A, Olejniczak A, Galinski M, et al. Performance of carbon-carbon supercapacitors based on organic,aqueous and ionic liquid electrolytes[J]. J Power Sources, 2010, 195(17): 5814-5819.
    Liu C, Yu Z, Neff D, et al. Graphene-based supercapacitor with an ultrahigh energy density[J]. Nano Lett, 2010, 10(12): 4863-4868.
    Rennie A J, Sanchezramirez N, Torresi R M, et al. Ether-bondcontaining ionic liquids as supercapacitor electrolytes[J]. J Phys Chem Lett, 2013, 4(17): 2970-2974.
  • 加载中
图(1)
计量
  • 文章访问数:  2276
  • HTML全文浏览量:  489
  • PDF下载量:  3528
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-30
  • 录用日期:  2017-04-26
  • 修回日期:  2017-03-31
  • 刊出日期:  2017-04-28

目录

    /

    返回文章
    返回