留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米碳管在胡敏酸中的分级悬浮

魏超贤 张凰 张迪 杨晓磊

魏超贤, 张凰, 张迪, 杨晓磊. 纳米碳管在胡敏酸中的分级悬浮. 新型炭材料, 2017, 32(3): 252-257.
引用本文: 魏超贤, 张凰, 张迪, 杨晓磊. 纳米碳管在胡敏酸中的分级悬浮. 新型炭材料, 2017, 32(3): 252-257.
WEI Chao-xian, ZHANG Huang, ZHANG Di, YANG Xiao-lei. Suspension of carbon nanotubes in natural humic acid water. New Carbon Mater., 2017, 32(3): 252-257.
Citation: WEI Chao-xian, ZHANG Huang, ZHANG Di, YANG Xiao-lei. Suspension of carbon nanotubes in natural humic acid water. New Carbon Mater., 2017, 32(3): 252-257.

纳米碳管在胡敏酸中的分级悬浮

基金项目: 国家自然科学基金(41663014, 41303093);云南省自然科学基金面上项目(2014FB121);昆明理工大学人才启动经费(14118762).
详细信息
    作者简介:

    魏超贤,硕士.E-mail:690647076@qq.com

    通讯作者:

    张迪,副教授,博士.E-mail:zhangdi2002113@sina.com

  • 中图分类号: TQ127.1+1

Suspension of carbon nanotubes in natural humic acid water

Funds: National Natural Science Foundation of China (41663014,41303093);Scientific Foundation of Yunnan Province (2014FB121);Scientific Foundation of Kunming University of Science and Technology (14118762).
  • 摘要: 随着纳米碳管(CNTs)的广泛应用,其不可避免地进入环境中,天然有机质与CNTs的相互作用增大了CNTs的分散性,可能带来更大的环境风险。本研究系统考察了溶解胡敏酸(HA)对CNTs的悬浮效果,发现随着悬浮次数的增加,HA的累积吸附量不断增大,而CNTs的悬浮量先增加后减少,表明CNTs确实存在分级悬浮的现象。通过透射电子显微镜和热重分析对高悬浮量和低悬浮量的CNTs进行表征发现,高悬浮量的CNTs相比低悬浮量的CNTs短且碎,说明具有较多缺陷的CNTs可能是易悬浮的部分;尽管高悬浮量的CNTs对HA的累积吸附量较低,但其较早的出现了明显的失重平台,具有较差的热稳定性。两方面的证据可以证实CNTs自身性质的差异是其分级悬浮的控制性因素。
  • Apul O G, Karanfil T. Adsorption of synthetic organic contaminants by carbon nanotubes:A critical review[J]. Water Research, 2015, 68:34-55.
    Huang X, Pan C, Huang X. Preparation and characterization of γ-MnO2/CNTs nanocomposite[J]. Materials Letters, 2007, 61(4):934-936.
    Li Y F, Liu Y Z, Yang Y G, et al. Reduced graphene oxide/MWCNT hybrid sandwiched film by self-assembly for high performance supercapacitor electrodes[J]. Applied Physics A Materials Science & Processing, 2012, 108:701-707.
    Pan B, Zhang D, Li H, et al. Increased adsorption of sulfamethoxazole on suspended carbon nanotubes by dissolved humic acid[J]. Environmental Science & Technology, 2013, 47(14):7722-7728.
    Klaine S J, Alvarez P J J, Batley G E, et al. Nanomaterials in the environment:behavior, fate, bioavailability, and effects[J]. Environmental Toxicology and Chemistry, 2008, 27(9):1825-185.
    Bystrzejewski M, Huczko A, Lange H, et al. Dispersion and diameter separation of multi-wall carbon nanotubes in aqueous solutions.[J]. The Journal of Colloid Interface Science, 2010, 345(2):138-142.
    Oleszczuk P, Xing B. Influence of anionic, cationic and nonionic surfactants on adsorption and desorption of oxytetracycline by ultrasonically treated and non-treated multiwalled carbon nanotubes[J]. Chemosphere, 2011, 85(8):1312-1317.
    Wang X, Lu J, Xing B. Sorption of organic contaminants by carbon nanotubes:influence of adsorbed organic matter[J]. Environmental Science & Technology, 2008, 42(9):3207-3212.
    Lin D, Xing B. Adsorption of phenolic compounds by carbon nanotubes:role of aromaticity and substitution of hydroxyl groups[J]. Environmental Science & Technology, 2008, 42(19):7254-7259.
    Yang K, Yi Z, Jing Q, et al. Sonication-assisted dispersion of carbon nanotubes in aqueous solutions of the anionic surfactant SDBS:The role of sonication energy[J]. Chinese Science Bulletin, 2013, 58(17):2082-2090.
    Matarredona O, Rhoads H, Li Z, et al. Dispersion of single-walled carbon nanotubes in aqueous solutions of the anionic surfactant NaDDBS[J]. The Journal of Physical Chemistry B, 2003, 107(48):13357-13367.
    Tsai Y, Huang J. Poly(vinyl alcohol)-assisted dispersion of multiwalled carbon nanotubes in aqueous solution for electroanalysis[J]. Electrochemistry Communications, 2006, 8(6):956-960.
    Blanch A J, Lenehan C E, Quinton J S. Optimizing surfactant concentrations for dispersion of single-walled carbon nanotubes in aqueous solution.[J]. The Journal of Physical Chemistry B, 2010, 114(30):9805-9811.
    Kang S, Xing B. Phenanthrene sorption to sequentially extracted soil humic acids and humins[J]. Environmental Science & Technology, 2005, 39(1):134-140.
    Yang J, Jiang L C, Zhang W D, et al. A highly sensitive non-enzymatic glucose sensor based on a simple two-step electrodeposition of cupric oxide (CuO) nanoparticles onto multi-walled carbon nanotube arrays[J]. Talanta, 2010, 82(1):25-33.
    Uyguner C S, Bekbolet M. Evaluation of humic acid photocatalytic degradation by UV-vis and fluorescence spectroscopy[J]. Catalysis Today, 2005, 101(3):267-274.
    Smith B, Wepasnick K, Schrote K E, et al. Influence of surface oxides on the colloidal stability of multi-walled carbon nanotubes:A structure-property relationship[J]. Langmuir, 2009, 25(17):9767-9776.
    Chang X, Henderson W M, Bouchard D C. Multiwalled carbon nanotubes dispersion methods affect their aggregation, deposition, and biomarker response[J]. Environmental Science & Technology, 2015, 49(11):6645-6653.
    Wu C H. Studies of the equilibrium and thermodynamics of the adsorption of Cu2+ onto as-produced and modified carbon nanotubes[J]. Journal of Colloid and Interface Science, 2007, 311(2):338-346.
    Shu L. Interactions between DOM and MWCNTs and mechanisms of its impact on MWCNTs suspension[D]. Peking University, 2012.
    Bom D, Andrews R, Jacques D, et al. Thermogravimetric analysis of the oxidation of multiwalled carbon nanotubes:evidence for the role of defect sites in carbon nanotube chemistry[J]. Nano Letters, 2002, 2(6):615-619.
  • 加载中
图(1)
计量
  • 文章访问数:  469
  • HTML全文浏览量:  109
  • PDF下载量:  513
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-20
  • 录用日期:  2017-06-28
  • 修回日期:  2017-04-02
  • 刊出日期:  2017-06-28

目录

    /

    返回文章
    返回