留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热处理温度对石墨烯/炭纳米复合纤维催化氧化NO性能的影响

郭泽宇 黄正宏 康飞宇

郭泽宇, 黄正宏, 康飞宇. 热处理温度对石墨烯/炭纳米复合纤维催化氧化NO性能的影响. 新型炭材料, 2017, 32(4): 338-343.
引用本文: 郭泽宇, 黄正宏, 康飞宇. 热处理温度对石墨烯/炭纳米复合纤维催化氧化NO性能的影响. 新型炭材料, 2017, 32(4): 338-343.
GUO Ze-yu, HUANG Zheng-hong, KANG Fei-yu. The effect of the NH3 activation temperature of graphene/carbon composite nanofibers on their NO catalytic oxidation performance at room temperature. New Carbon Mater., 2017, 32(4): 338-343.
Citation: GUO Ze-yu, HUANG Zheng-hong, KANG Fei-yu. The effect of the NH3 activation temperature of graphene/carbon composite nanofibers on their NO catalytic oxidation performance at room temperature. New Carbon Mater., 2017, 32(4): 338-343.

热处理温度对石墨烯/炭纳米复合纤维催化氧化NO性能的影响

基金项目: 国家自然科学基金(51602162);内蒙古自治区高等学校科学研究项目(NJZZ17054).
详细信息
    作者简介:

    郭泽宇,博士研究生.E-mail:jerryguojob@aliyun.com

    通讯作者:

    黄正宏,博士,教授,E-mail:zhhuang@tsinghua.edu.cn;康飞宇,博士,教授,E-mail:fykang@tsinghua.edu.cn

  • 中图分类号: TB332

The effect of the NH3 activation temperature of graphene/carbon composite nanofibers on their NO catalytic oxidation performance at room temperature

Funds: National Natural Science Foundaton of China (51602162);Institutions of Higher Learning Scientific Research Projects of Inner Mongolia (NJZZ17054).
  • 摘要: 以聚丙烯腈(PAN)为碳前驱体,氧化石墨烯(GO)为添加物,通过静电纺丝技术制备了石墨烯/炭纳米复合纤维原丝,分别在900、1 000、1 100和1 200℃下氨气中炭化10 min,并在NH3中活化处理20 min得到多孔、N掺杂的石墨烯/炭纳米复合纤维。分别将4种样品用于室温下低浓度NO(50 ppm)的吸附和催化氧化研究。结果表明,复合纳米纤维对NO的催化氧化性能随着处理温度的升高而增强,在样品PGCNF1200达到最大转化率(49.7%),而对NO和NO2的吸附能力则强烈的依赖于纤维比表面积的大小。此外,经NH3活化处理后可以在纤维表面引入含氮官能团,可以和作为催化活性位点的GO共同对室温下NO的催化氧化起到促进作用。
  • Tang Q, Zhang Z G, Zhu W P, et al. SO2 and NO selective adsorption properties of coal-based activated carbons[J]. Fuel, 2005, 84(4): 461-465.
    Guo Z C, Xie Y S, Hong I Y, et al. Catalytic oxidation of NO to NO2 on activated carbon[J]. Energy Conversion and Management, 2001, 42(15-17): 2005-2018.
    Wang M X, Huang Z H, Shimohara T, et al. NO removal by electrospun porous carbon nanofibers at room temperature[J]. Chemical Engineering Journal, 2011, 170(2-3): 505-511.
    Mochida I, Korai Y, Shirahama M, et al. Removal of SOx and NOx over activated carbon fibers[J]. Carbon, 2000, 38(2): 227-239.
    Brandenberger S, Kroecher O, Tissler A, et al. The state of the art in selective catalytic reduction of NOx by ammonia using metal-exchanged zeolite catalysts[J]. Catal Rev-Sci Eng, 2008, 50(4): 492-531.
    Tang X, Hao J, Xu W, et al. Low temperature selective catalytic reduction of NOx with NH3 over amorphous MnOx catalysts prepared by three methods[J]. Catalysis Communications, 2007, 8(3): 329-334.
    Wang M X, Guo Z, Huang Z H, et al. NH3-activated carbon nanofibers for low-concentration NO removal at room temperature[J]. Catalysis Communications, 2015, 62: 83-88.
    Ramakrishna S, Fujihara K, Teo W-E, et al. Electrospun nanofibers: solving global issues[J]. Materials Today, 2006, 9(3): 40-50.
    张振兴, 杜鸿达, 李佳, 等. 静电纺丝制备定向排列聚酰亚胺基炭纳米纤维[J]. 新型炭材料, 2015, 30(4): 289-294. (ZHANG Zhen-xing, DU Hong-da, LI Jia, et al. Preparation of aligned polyimide-based carbon nanofibers by electrospinning. New Carbon Materials, 2015, 30(4): 289-294.)
    Hammel E, Tang X, Trampert M, et al. Carbon nanofibers for composite applications[J]. Carbon, 2004, 42(5-6): 1153-1158.
    Ji L W, Zhang X W. Electrospun carbon nanofibers containing silicon particles as an energy-storage medium[J]. Carbon, 2009, 47(14): 3219-3226.
    Merino C, Soto P, Vilaplana-Ortego E, et al. Carbon nanofibres and activated carbon nanofibres as electrodes in supercapacitors[J]. Carbon, 2005, 43(3): 551-557.
    Tan Z L, Xiao H N, Zhang R D, et al. Potential to use mesoporous carbon as catalyst support for hydrodesulfurization[J]. New Carbon Materials, 2009, 24(4): 333-342.
    Dadvar S, Tavanai H, Morshed M, et al. The removal of 2-chloroethyl ethyl sulfide using activated carbon nanofibers embedded with MgO and Al2O3 nanoparticles[J]. Journal of Chemical and Engineering Data, 2012, 57(5): 1456-1462.
    Aykut Y. Enhanced field electron emission from electrospun Co-loaded activated porous carbon nanofibers[J]. ACS applied materials & interfaces, 2012, 4(7): 3405-3415.
    Wan X K, Zou X Q, Shi H X, et al. Nitrogen doping of activated carbon loading Fe2O3 and activity in carbon-nitric oxide reaction[J]. Journal of Zhejiang University-Science A, 2007, 8(5): 707-711.
    Yang C M, Kaneko K. Adsorption properties of nitrogen-alloyed activated carbon fiber[J]. Carbon, 2001, 39(7): 1075-1082.
    Sousa J P S, Pereira M F R, Figueiredo J L. Catalytic oxidation of NO to NO2 on N-doped activated carbons[J]. Catalysis Today, 2011, 176(1): 383-387.
    Li D, Kaner R B. Materials science. Graphene-based materials[J]. Science, 2008, 320(5880): 1170-1171.
    Novoselov K S, Fal'ko V I, Colombo L, et al. A roadmap for graphene[J]. Nature, 2012, 490(7419): 192-200.
    Stankovich S, Dikin D A, Dommett G H, et al. Graphene-based composite materials[J]. Nature, 2006, 442(7100): 282-286.
    Marcano D C, Kosynkin D V, Berlin J M, et al. Improved synthesis of graphene oxide[J]. Acs Nano, 2010, 4(8): 4806-4814.
    Guo Z, Wang M, Huang Z-H, et al. Preparation of graphene/carbon hybrid nanofibers and their performance for NO oxidation[J]. Carbon, 2015, 87: 282-291.
    Wang Y, Serrano S, Santiago-Avilés JJ. Raman characterization of carbon nanofibers prepared using electrospinning[J]. Synthetic Metals, 2003, 138(3): 423-427.
    Wang M X, Huang Z H, Shen K, et al. Catalytically oxidation of NO into NO2 at room temperature by graphitized porous nanofibers[J]. Catalysis Today, 2013, 201: 109-114.
  • 加载中
图(1)
计量
  • 文章访问数:  420
  • HTML全文浏览量:  119
  • PDF下载量:  496
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-02
  • 录用日期:  2017-08-31
  • 修回日期:  2017-08-03
  • 刊出日期:  2017-08-28

目录

    /

    返回文章
    返回