留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微型超级电容器的器件构型与电极制备最新进展

王森 郑双好 黄海波 孙承林 吴忠帅

王森, 郑双好, 黄海波, 孙承林, 吴忠帅. 微型超级电容器的器件构型与电极制备最新进展. 新型炭材料, 2017, 32(6): 501-508.
引用本文: 王森, 郑双好, 黄海波, 孙承林, 吴忠帅. 微型超级电容器的器件构型与电极制备最新进展. 新型炭材料, 2017, 32(6): 501-508.
WANG Sen, ZHENG Shuang-hao, HUANG Hai-bo, SUN Cheng-lin, WU Zhong-shuai. Recent progress in device configuration and electrode fabrication for micro-supercapacitors. New Carbon Mater., 2017, 32(6): 501-508.
Citation: WANG Sen, ZHENG Shuang-hao, HUANG Hai-bo, SUN Cheng-lin, WU Zhong-shuai. Recent progress in device configuration and electrode fabrication for micro-supercapacitors. New Carbon Mater., 2017, 32(6): 501-508.

微型超级电容器的器件构型与电极制备最新进展

基金项目: 国家自然科学基金(51572259);科技部国家重点研发计划(2016YFB0100100,2016YFA0200200);辽宁省自然科学基金(201602737);大连化物所科研创新基金(DICP ZZBS201708);国家青年千人计划;延长石油-大连化物所探索性科研项目.
详细信息
    作者简介:

    王森,博士研究生.E-mail:senwang@dicp.ac.cn

    通讯作者:

    吴忠帅,研究员.E-mail:wuzs@dicp.ac.cn

  • 中图分类号: TB332

Recent progress in device configuration and electrode fabrication for micro-supercapacitors

Funds: National Natural Science Foundation of China (51572259);National Key R&D Program of China (2016YFB0100100,2016YFA0200200);Natural Science Foundation of Liaoning Province (201602737);DICP (DICP ZZBS201708);Recruitment Program of Global Expert (1000 Talent Plan);Exploratory Research Program of Shaanxi Yanchang Petroleum (Group) CO.,LTD&DICP.
  • 摘要: 微型超级电容器是一类新型的高功率微型电化学储能器件,不仅能够解决薄膜电池功率密度低和电解电容器能量密度低的问题,而且能够作为功率源与微/纳电子器件直接集成,在瞬间提供有效的峰值功率。本文主要综述了微型超级电容器的器件构型和电极/器件制备方法的最新研究进展,目前面临的挑战,并展望了其未来的发展趋势。
  • Zheng S H, Wu Z S, Wang S, et al. Graphene-based materials for high-voltage and high-energy asymmetric supercapacitors[J]. Energy Storage Mater, 2017, 6:70-97.
    Zheng S H, Li Z, Wu Z S, et al. High packing density unidirectional arrays of vertically aligned graphene with enhanced areal capacitance for high-power micro-supercapacitors[J]. ACS Nano, 2017, 11(4):4009-4016.
    Wu Z S, Winter A, Chen L, et al. Three-dimensional nitrogen and boron co-doped graphene for high-performance all-solid-state supercapacitors[J]. Adv Mater, 2012, 24(37):5130-5135.
    Liu W, Yang Y, Liu X, et al. Preparation and electrochemical performance of a polyaniline-carbon microsphere hybrid as a supercapacitor electrode[J]. New Carbon Materials, 2016, 31(6):594-599.
    Wu Z S, Feng X L, Cheng H M. Recent advances in graphene-based planar micro-supercapacitors for on-chip energy storage[J]. Natl Sci Rev, 2014, 1(2):277-292.
    Wang S, Zheng S H, Sun C L, et al. Recent advances in graphene-based planar micro-supercapacitors[J]. Sci China Chem, 2016, 46(8):732-744.
    Qi D, Liu Y, Liu Z, et al. Design of architectures and materials in in-plane micro-supercapacitors:current status and future challenges[J]. Adv Mater, 2017, 29:1602802.
    Tyagi A, Tripathi K M, Gupta R K. Recent progress in micro-scale energy storage devices and future aspects[J]. J Mater Chem A, 2015, 3(45):22507-22541.
    Yoon Y S, Cho W I, Lim J H, et al. Solid-state thin-film supercapacitor with ruthenium oxide and solid electrolyte thin films[J]. J Power Sources, 2001, 101(1):126-129.
    Kim H K, Cho S H, Ok Y W, et al. All solid-state rechargeable thin-film microsupercapacitor fabricated with tungsten cosputtered ruthenium oxide electrodes[J]. J Vac Sci Technol B, 2003, 21(3):949-952.
    王森, 吴忠帅, 孙承林. 微型超级电容器进展:自下而上法制备出高比容量硫掺杂石墨烯[J]. 物理, 2017, 46(7):457-459.
    Wu Z S, Tan Y Z, Zheng S H, et al. Bottom-up fabrication of sulfur-doped graphene films derived from sulfur-annulated nanographene for ultrahigh volumetric capacitance micro-supercapacitors[J]. J Am Chem Soc, 2017, 139(12):4506-4512.
    Wu Z S, Yang S, Zhang L, et al. Binder-free activated graphene compact films for all-solid-state micro-supercapacitors with high areal and volumetric capacitances[J]. Energy Storage Mater, 2015, 1:119-126.
    Wu Z S, Parvez K, Li S, et al. Alternating stacked gaphene-conducting polymer compact films with ultrahigh areal and volumetric capacitances for high-energy micro-supercapacitors[J]. Adv Mater, 2015, 27(27):4054-4061.
    Wu Z S, Parvez K, Winter A, et al. Layer-by-layer assembled heteroatom-doped graphene films with ultrahigh volumetric capacitance and rate capability for micro-supercapacitors[J]. Adv Mater, 2014, 26(26):4552-4558.
    Wu Z S, Parvez K, Feng X L, et al. Graphene-based in-plane micro-supercapacitors with high power and energy densities[J]. Nat Commun, 2013, 4:2487.
    Wu Z S, Parvez K, Feng X L, et al. Photolithographic fabrication of high-performance all-solid-state graphene-based planar micro-supercapacitors with different interdigital fingers[J]. J Mater Chem A, 2014, 2(22):8288-8293.
    Wu Z S, Zheng Y, Zheng S H, et al. Stacked-layer heterostructure films of 2D thiophene nanosheets and graphene for high-rate all-solid-state pseudocapacitors with enhanced volumetric capacitance[J]. Adv Mater, 2017, 29(3):1602960.
    Liu Z, Tian X, Xu X, et al. Capacitance and voltage matching between MnO2 nanoflake cathode and Fe2O3 nanoparticle anode for high-performance asymmetric micro-supercapacitors[J]. Nano Res, 2017, 10(7):2471-2481.
    El-Kady MF, Strong V, Dubin S, et al. Laser Scribing of high-performance and flexible graphene-based electrochemical capacitors[J]. Science, 2012, 335(6074):1326-1330.
    El-Kady MF, Kaner RB. Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage[J]. Nat Commun, 2013, 4:1475.
    El-Kady MF, Ihns M, Li M, et al. Engineering three-dimensional hybrid supercapacitors and microsupercapacitors for high-performance integrated energy storage[J]. Proc Natl Acad Sci USA, 2015, 112(14):4233-4238.
    Peng Z W, Ye R Q, Mann J A, et al. Flexible boron-doped laser-induced graphene microsupercapacitors[J]. ACS Nano, 2015, 9(6):5868-5875.
    Lin J, Peng Z, Liu Y, et al. Laser-induced porous graphene films from commercial polymers[J]. Nat Commun, 2014, 5:5714.
    Wang S, Wu Z S, Zheng S, et al. Scalable fabrication of photochemically reduced graphene-based monolithic micro-supercapacitors with superior energy and power densities[J]. ACS Nano, 2017, 11(4):4283-4291.
    Zheng S H, Tang X, Wu Z S, et al. Arbitrary-shaped graphene-based planar sandwich supercapacitors on one substrate with enhanced flexibility and integration[J]. ACS Nano, 2017, 11(2):2171-2179.
    Liu Z, Wu Z S, Yang S, et al. Ultraflexible in-plane micro-supercapacitors by direct printing of solution-processable electrochemically exfoliated graphene[J]. Adv Mater, 2016, 28(11):2217-2222.
    Wu Z S, Liu Z, Parvez K, et al. Ultrathin printable graphene supercapacitors with AC line-filtering performance[J]. Adv Mater, 2015, 27(24):3669-3675.
    Shi X, Wu ZS, Qin J, et al. Graphene-based linear tandem micro-supercapacitors with metal-free current collectors and high-voltage output[J]. Adv Mater, 2017,1703034.
    Pang H, Zhang Y, Lai W Y, et al. Lamellar K2Co3(P2O7)2·2H2O nanocrystal whiskers:High-performance flexible all-solid-state asymmetric micro-supercapacitors via inkjet printing[J]. Nano Energy, 2015, 15:303-312.
    Yue Y, Yang Z, Liu N, et al. A flexible integrated system containing a microsupercapacitor, a photodetector, and a wireless charging coil[J]. ACS Nano, 2016, 10(12):11249-11257.
    Xu Y F, Schwab M G, Strudwick A J, et al. Screen-Printable Thin Film Supercapacitor Device Utilizing Graphene/Polyaniline Inks[J]. Adv Energy Mater, 2013, 3(8):1035-1040.
    Secor E B, Lim S, Zhang H, et al. Gravure printing of graphene for large-area flexible electronics[J]. Adv Mater, 2014, 26(26):4533-4538.
    Rocha V G, García-Tuñón E, Botas C, et al. Multimaterial 3D printing of graphene-based electrodes for electrochemical energy storage using thermoresponsive inks[J]. ACS Appl Mater Interfaces, 2017, 9(42):37136-37245.
    Zheng S, Lei W, Qin J, et al. All-solid-state high-energy planar asymmetric supercapacitors based on all-in-one monolithic film using boron nitride nanosheets as separator[J]. Energy Storage Mater, 2018, 10:24-31.
    Xiao H, Wu Z S, Chen L, et al. One-Step device fabrication of phosphorene and graphene interdigital micro-supercapacitors with high energy density[J]. ACS Nano, 2017,11(7):7284-7292.
    Qin J, Zhou F, Xiao H, et al. Mesoporous polypyrrole-based graphene nanosheets anchoring redox polyoxometalate for all-solid-state micro-supercapacitors with enhanced volumetric capacitance[J]. Sci China Mater, 2017, https://doi.org/10.1007/s40843-017-9132-8.
    Qin J, Wu Z S, Zhou F, et al. Simplified fabrication of high areal capacitance all-solid-state micro-supercapacitors based on graphene and MnO2 nanosheets[J]. Chin Chem Lett, 2017. http://dx.doi.org/10.1016/j.cclet.2017.08.007.
  • 加载中
图(1)
计量
  • 文章访问数:  512
  • HTML全文浏览量:  168
  • PDF下载量:  1394
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-15
  • 录用日期:  2017-12-28
  • 修回日期:  2017-12-03
  • 刊出日期:  2017-12-28

目录

    /

    返回文章
    返回