留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水热法制备还原氧化石墨烯担载Ni(OH)2纳米带复合材料及其电容特性

李倩 吕春祥 陈成猛 谢莉婧 袁淑霞

李倩, 吕春祥, 陈成猛, 谢莉婧, 袁淑霞. 水热法制备还原氧化石墨烯担载Ni(OH)2纳米带复合材料及其电容特性. 新型炭材料, 2017, 32(6): 527-534.
引用本文: 李倩, 吕春祥, 陈成猛, 谢莉婧, 袁淑霞. 水热法制备还原氧化石墨烯担载Ni(OH)2纳米带复合材料及其电容特性. 新型炭材料, 2017, 32(6): 527-534.
LI Qian, LU Chun-xiang, CHEN Cheng-meng, XIE Li-jing, YUAN Shu-xia. Hydrothermal synthesis of Ni(OH)2/RGO nanocomposites with superior electrochemical performance. New Carbon Mater., 2017, 32(6): 527-534.
Citation: LI Qian, LU Chun-xiang, CHEN Cheng-meng, XIE Li-jing, YUAN Shu-xia. Hydrothermal synthesis of Ni(OH)2/RGO nanocomposites with superior electrochemical performance. New Carbon Mater., 2017, 32(6): 527-534.

水热法制备还原氧化石墨烯担载Ni(OH)2纳米带复合材料及其电容特性

基金项目: 国家自然科学基金(51174144);山西省科技攻关(201103210392).
详细信息
    作者简介:

    李倩,博士研究生.E-mail:liqian1004@163.com

    通讯作者:

    吕春祥,研究员.E-mail:lucx@sxicc.ac.cn;陈成猛,副研究员.E-mail:ccm@sxicc.ac.cn

  • 中图分类号: TB332

Hydrothermal synthesis of Ni(OH)2/RGO nanocomposites with superior electrochemical performance

Funds: National Natural Science Foundation of China (51174144);Scientific Key Project of Shanxi Province (201103210392).
  • 摘要: 以氧化石墨烯溶液和硝酸镍为原料,采用一步水热法制备了Ni(OH)2/还原氧化石墨烯(Ni(OH)2@RGO)复合材料。在Ni(OH)2/还原氧化石墨烯的研究中,两组分间的配比对复合物的形貌和电化学活性具有显著的影响。在最佳配比下(RGO含量26.7%),Ni(OH)2以纳米带形式担载于石墨烯片相互搭接成的三维网络结构中,从而可暴露更多的活性位点和有效比表面积,利于展现更好的电化学性能。该复合材料用作超级电容器电极材料时,展现了高的比电容(在1 A·g-1下的比电容高达1 804 F·g-1),良好的倍率性能(在25 A·g-1下比电容保持率仍在46%以上),以及优异的循环稳定性(在2 A·g-1下循环2 000次的电容保持率为90.3%)。
  • C Zhang, Q Chen, H Zhan. Supercapacitors based on reduced graphene oxide nanofibers supported Ni(OH)2 nanoplates with enhanced electrochemical performance[J]. ACS Applied Materials & Interfaces, 2016, 8:22977-22987.
    C Liu, Z Yu, D Neff, et al. Graphene-based supercapacitor with an ultrahigh energy density[J]. Nano Letters, 2010, 10:4863-4868.
    P Simon, Y Gogotsi. Materials for electrochemical capacitors[J]. Nature Materials, 2008, 7:845-854.
    W Jiang, D Yu, Q Zhang, et al. Ternary hybrids of amorphous nickel hydroxide-carbon nanotube-conducting polymer for supercapacitors with high energy density, excellent rate capability, and Long Cycle Life[J]. Advanced Functional Materials, 2015, 25:1063-1073.
    Y Zhai, Y Dou, D Zhao, et al. Carbon materials for chemical capacitive energy storage[J]. Advanced Materials, 2011, 23:4828-4850.
    Z-S Wu, D-W Wang, W Ren, et al. Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors[J]. Advanced Functional Materials, 2010, 20:3595-3602.
    T C Chou, R A Doong, C C Hu, et al. Hierarchically porous carbon with manganese oxides as highly efficient electrode for asymmetric supercapacitors[J]. Chem Sus Chem, 2014, 7:841-847.
    Y Wang, X Zhang, X Li, et al. Highly dispersed ultrasmall Ni(OH)2 aggregated particles on a conductive support as a supercapacitor electrode with superior performance[J]. J Colloid Interface Sci, 2017, 490:252-258.
    H Wang, H S Casalongue, Y Liang, et al. Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials[J]. Journal of the American Chemical Society, 2010, 132:7472-7477.
    L Sui, S Tang, Y Chen, et al. An asymmetric supercapacitor with good electrochemical performances based on Ni(OH)2/AC/CNT and AC[J]. Electrochimica Acta, 2015, 182:1159-1165.
    N A Alhebshi, R B Rakhi, H N Alshareef. Conformal coating of Ni(OH)2 nanoflakes on carbon fibers by chemical bath deposition for efficient supercapacitor electrodes[J]. Journal of Materials Chemistry A, 2013, 1:14897.
    R R Salunkhe, J Lin, V Malgras, et al. Large-scale synthesis of coaxial carbon nanotube/Ni(OH)2 composites for asymmetric supercapacitor application[J]. Nano Energy, 2015, 11:211-218.
    W Lv, Z Li, Y Deng, et al. Graphene-based materials for electrochemical energy storage devices:Opportunities and challenges[J]. Energy Storage Materials, 2016, 2:107-138.
    Z P Chen, W C Ren, L B Gao, et al. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition[J]. Nature Materials, 2011, 10:424-428.
    Y Wimalasiri, L Zou. Carbon nanotube/graphene composite for enhanced capacitive deionization performance[J]. Carbon, 2013, 59:464-471.
    W S Hummers, R E Offeman. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80:1339-1339.
    Q Li, C Lu, C Chen, et al. Layered NiCo2O4/reduced graphene oxide composite as an advanced electrode for supercapacitor[J]. Energy Storage Materials, 2017, 8:59-67.
    G-L. Tian, M-Q. Zhao, B Zhang, et al. Monodisperse embedded nanoparticles derived from an atomic metal-dispersed precursor of layered double hydroxide for architectured carbon nanotube formation[J]. Journal of Materials Chemistry A, 2014, 2:1686-1696.
    J Huang, D Cao, T Lei, et al. Structural and electrochemical performance of Al-substituted β-Ni(OH)2 nanosheets electrodes for nickel metal hydride battery[J]. Electrochimica Acta, 2013, 111:713-719.
  • 加载中
图(1)
计量
  • 文章访问数:  341
  • HTML全文浏览量:  72
  • PDF下载量:  521
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-19
  • 录用日期:  2017-12-28
  • 修回日期:  2017-12-05
  • 刊出日期:  2017-12-28

目录

    /

    返回文章
    返回