留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

功能互补炭材料及其在锂硫电池中电化学性能

唐晓楠 孙振华 禚淑萍 李峰

唐晓楠, 孙振华, 禚淑萍, 李峰. 功能互补炭材料及其在锂硫电池中电化学性能. 新型炭材料, 2017, 32(6): 535-541.
引用本文: 唐晓楠, 孙振华, 禚淑萍, 李峰. 功能互补炭材料及其在锂硫电池中电化学性能. 新型炭材料, 2017, 32(6): 535-541.
TANG Xiao-nan, SUN Zhen-hua, ZHUO Shu-ping, LI Feng. Nitrogen-doped CMK-3@graphene hybrids as a sulfur host material for use in lithium-sulfur batteries. New Carbon Mater., 2017, 32(6): 535-541.
Citation: TANG Xiao-nan, SUN Zhen-hua, ZHUO Shu-ping, LI Feng. Nitrogen-doped CMK-3@graphene hybrids as a sulfur host material for use in lithium-sulfur batteries. New Carbon Mater., 2017, 32(6): 535-541.

功能互补炭材料及其在锂硫电池中电化学性能

基金项目: 山东省自然科学基金(2015ZRB01765).
详细信息
    作者简介:

    唐晓楠,博士研究生.E-mail:xntang@imr.ac.cn

    通讯作者:

    李峰,研究员.E-mail:fli@imr.ac.cn;禚淑萍,教授.E-mail:zhuosp_academic@yahoo.com

  • 中图分类号: TB332

Nitrogen-doped CMK-3@graphene hybrids as a sulfur host material for use in lithium-sulfur batteries

Funds: Natural Science Foundation of Shandong Province (2015ZRB01765).
  • 摘要: 由于锂硫电池成本低、理论能量密度高、安全、环保,使其极具潜力成为下一代新能源储能体系。但循环过程中电极材料结构产生破坏及多硫穿梭效应是锂硫电池容量衰减的主要原因。为此,本文提出了采用功能互补的炭材料-氮掺杂石墨烯包覆CMK-3材料(N-(CMK-3@G))来解决该问题。该材料基于功能互补原理,利用CMK-3防止石墨烯堆叠及二维石墨烯包覆在CMK-3外面抑制多硫穿梭,并采用氮掺杂的化学吸附提高锂硫电池正极的电化学性能。以N-(CMK-3@G)/S复合材料作为锂硫电池正极,在电流密度为335 mA·g-1时,300次循环后其可逆放电容量为867.3 mAh·g -1,容量保持率为82%。与N-CMK-3/S和N-G/S正极相比,N-(CMK-3@G)/S复合电极倍率性能及极化特性都得到了较大的改善。从炭材料功能出发,对材料设计,不仅可结合CMK-3及石墨烯的功能特点,形成作用互补,提高锂硫电池的循环性能,且氮掺杂可通过化学作用强化对多硫吸附,抑制多硫离子的穿梭,进一步提高锂硫电池性能。
  • 张强, 程新兵, 黄佳琦, 等. 碳质材料在锂硫电池中的应用研究进展[J]. 新型炭材料, 2014, 29(4):241-264. (ZHANG Qiang, CHENG Xin-bing, HUANG Jia-qi, et al. Review of carbon materials for advanced lithhium-sulfur batteries[J]. New Carbon Materials, 2014, 29(4):241-264.)
    Chen X, Hou T Z, Li B, et al. Towards stable lithium-sulfur batteries:Mechanistic insights into electrolyte decomposition on lithium metal anode[J]. Energy Storage Materials, 2017, 8:194-201.
    Gao X P, Yang H X. Multi-electron reaction materials for high energy density batteries[J]. Energy & Environmental Science, 2010, 3, (2):174-189.
    Fang X, Peng H. A Revolution in Electrodes:Recent Progress in Rechargeable Lithium-Sulfur Batteries[J]. Small, 2015, 11(13):1488-511.
    陈君政, 吴峰, 陈人杰, 等. 不同管径多壁碳纳米管与硫含量对锂硫电池单质硫正极电化学性能的影响[J]. 新型炭材料, 2013, 28(6):429-434. (CHEN Jun-zheng, WU Feng, CHEN Ren-jie, et al. Preparation of multi-wall carbon nanotube/S composites as cathodes for lithium/sulfur batteries[J]. New Carbon Materials, 2013, 28(6):429-434.)
    Nair J R, Bella F, Angulakshmi N, et al. Nanocellulose-laden composite polymer electrolytes for high performing lithium-sulphur batteries[J]. Energy Storage Materials, 2016, 3:69-76.
    唐晓楠, 孙振华, 陈克, 等. 锂硫电池复合硫正极中客体材料与多硫化物的相互作用[J]. 储能科学与技术2017, 6, (3):345-359. (TANG Xiaonan, SUN Zhenhua, CHEN Ke, et al. Cathode hybrid materials for lithium-sulfur battery:The interaction between the host and polysulfide[J]. Energy Storage Science and Technology, 2017, 6, (3):345-359.)
    梁骥, 闻雷, 成会明, 等. 炭材料在电化学储能中的应用[J]. 电化学,2015, 21, (6):505-517. (LIANG Ji, WEN Lei, CHENG Huiminig, et al. Applications of carbon materials in electrochemical energy storage[J]. Journal of Electrochemistry, 2015, 21(6):505-517.)
    Ummethala R, Fritzsche M, Jaumann T, et al. Lightweight, free-standing 3D interconnected carbon nanotube foam as a flexible sulfur host for high performance lithium-sulfur battery cathodes[J]. Energy Storage Materials, 2017, In Press, Corrected Proof.
    Tang X N, Sun Z H, Liang, J, et al. A high tenacity electrode by assembly of a soft sorbent and hard skeleton for lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2017, DOI: 10.1039/C7TA07063B.
    张松涛, 郑明波, 曹洁明, 等. 锂硫电池用多孔碳/硫复合正极材料的研究[J]. 化学进展, 2016, 28, (8):1148-1155. (ZHANG Songtao, ZHNEG Mingbo, CAO Jieming, et al. Porous carbon/sulfur composite cathode materials for lithium-sulfur batteries[J]. Progress in Chemistry, 2016, 28(8):1148-1155.)
    Liang J, Sun Z. H, Li F, et al. Carbon materials for Li-S batteries:Functional evolution and performance improvement[J]. Energy Storage Materials, 2015, 2:76-106.
    Ai W, Zhou W W, Du Z Z, et al. Nitrogen and phosphorus codoped hierarchically porous carbon as an efficient sulfur host for Li-S batteries[J]. Energy Storage Materials, 2017, 6:112-118.
    Balach J, Singh H K, Gomoll S, et al. Synergistically enhanced polysulfide chemisorption using a flexible hybrid separator with N and S dual-doped mesoporous carbon coating for advanced lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2016, 8, (23):14586-95.
    Bao W, Su D, Zhang W, et al. 3D metal carbide@mesoporous carbon hybrid architecture as a new polysulfide reservoir for lithium-sulfur batteries[J]. Advanced Functional Materials, 2016, 26, (47):8746-8756.
    Ji X, Lee K T and Nazar L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J]. Nature Materials, 2009, 8, (6):500-506.
    Lv W, Li Z, Deng Y, et al. Graphene-based materials for electrochemical energy storage devices:opportunities and challenges[J]. Energy Storage Materials, 2016, 2:107-138.
    Yu M, Li R, Wu M, et al. Graphene materials for lithium-sulfur batteries[J]. Energy Storage Materials, 2015, 1:51-73.
    Xu C, Wu Y, Zhao X, et al. Sulfur/three-dimensional graphene composite for high performance lithiumesulfur batteries[J]. Journal of Power Sources, 2015, 275:22-25.
    Zhang J, Dong Z, Wang X, et al. Sulfur nanocrystals anchored graphene composite with highly improved electrochemical performance for lithiumesulfur batteries[J]. Journal of Power Sources, 2014, 270:1-8.
    Hu G, Xu C, Sun Z, et al. 3D graphene-foam-reduced-graphene-oxide hybrid nested hierarchical networks for high-performance Li-S batteries[J]. Advanced Materials, 2016, 28, (8):1603-1609.
    Chen R, Zhao T, Lu J, et al. Graphene-based three-dimensional hierarchical sandwich-type architecture for high-performance Li/S batteries[J]. Nano Letters, 2013, 13, (10):4642-4649.
    Peng H J, Zhang Q. Designing host materials for sulfur cathodes:From physical confinement to surface chemistry[J]. Angewandte Chemie International Edition, 2015, 54:11018-11020.
    Zhao J P, Pei S F, Ren W, et al. Efficient preparation of large-area graphene oxide sheets for transparent conductive films[J]. ACS Nano, 2010, 4, (9):5245-5252.
    Zhou X, Xie J, Yang J, et al. Improving the performance of lithiumesulfur batteries by graphene coating[J]. Journal of Power Sources, 2013, 243:993-1000.
    Wu Y, Xu C, Guo J, et al. Enhanced electrochemical performance by wrapping graphene on carbon nanotube/sulfur composites for rechargeable lithium-sulfur batteries[J]. Materials Letters, 2014, 137:277-280.
    Qian W, Zhu J, Zhang Y, et al. Condiment-derived 3D architecture porous carbon for electrochemical supercapacitors[J]. Small, 2015, 11, (37):4959-4969.
    Yang X, Zhang L,Zhang F, et al. Sulfur-infiltrated graphene-based layered porous carbon cathodes for high-performance lithium sulfur batteries[J]. ACS Nano, 2014, 8(5):5208-5215.
    Xin S, You Y, Li H, et al. Graphene sandwiched by sulfur-confined mesoporous carbon nanosheets:a kinetically stable cathode for Li-S batteries[J]. ACS applied materials & interfaces, 2016, 8, (49):33704-33711.
    Li Z, Yin L. Nitrogen-doped MOF-derived micropores carbon as immobilizer for small sulfur molecules as a cathode for lithium sulfur batteries with excellent electrochemical performance[J]. ACS applied materials & interfaces, 2015, 7, (7):4029-4038.
    Yin L C, Liang J, Zhou G. M, et al. Understanding the interactions between lithium polysulfides and N-doped graphene using density functional theory calculations[J]. Nano Energy, 2016, 25:203-210.
    Wang H, Zhang C, Chen Z, et al. Large-scale synthesis of ordered mesoporous carbon fiber and its application as cathode material for lithium-sulfur batteries[J]. Carbon, 2015, 81:782-787.
  • 加载中
图(1)
计量
  • 文章访问数:  402
  • HTML全文浏览量:  109
  • PDF下载量:  565
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-25
  • 录用日期:  2017-12-28
  • 修回日期:  2017-12-05
  • 刊出日期:  2017-12-28

目录

    /

    返回文章
    返回