留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氮掺杂中孔炭正负极不对称电容行为研究

陈明奇 潘敏 田梦 王际童 龙东辉

陈明奇, 潘敏, 田梦, 王际童, 龙东辉. 氮掺杂中孔炭正负极不对称电容行为研究. 新型炭材料, 2017, 32(6): 542-549.
引用本文: 陈明奇, 潘敏, 田梦, 王际童, 龙东辉. 氮掺杂中孔炭正负极不对称电容行为研究. 新型炭材料, 2017, 32(6): 542-549.
CHEN Ming-qi, PAN Min, TIAN Meng, WANG Ji-tong, LONG Dong-hui. The capacitances of the negative and positive electrodes of supercapacitors, using nitrogen-doped mesoporous carbons as the active materials, in different electrolytes. New Carbon Mater., 2017, 32(6): 542-549.
Citation: CHEN Ming-qi, PAN Min, TIAN Meng, WANG Ji-tong, LONG Dong-hui. The capacitances of the negative and positive electrodes of supercapacitors, using nitrogen-doped mesoporous carbons as the active materials, in different electrolytes. New Carbon Mater., 2017, 32(6): 542-549.

氮掺杂中孔炭正负极不对称电容行为研究

基金项目: 国家自然科学基金(21576090,51302083,51172071);中央高校基本科研业务费专项资金(ZZZ201718002).
详细信息
    作者简介:

    陈明奇,E-mail:achenmingqi@126.com

    通讯作者:

    龙东辉,E-mail:longdh@mail.ecust.edu.cn

  • 中图分类号: TB332

The capacitances of the negative and positive electrodes of supercapacitors, using nitrogen-doped mesoporous carbons as the active materials, in different electrolytes

Funds: National Science Foundation of China (21576090,51302083,51172071);Fundamental Research Funds for the Central Universities (ZZZ201718002).
  • 摘要: 以三聚氰胺、苯酚和甲醛为前驱体,硅溶胶为模板剂,采用溶胶-凝胶与硬模板结合的方法,制备出一系列不同氮掺杂含量(0~11.9%)、相似孔结构的中孔炭材料,系统研究了氮掺杂含量对材料在H2SO4,KOH及Et4NBF4/PC电解液体系中的正负极不对称电容行为。结果表明,氮原子的掺杂明显提升了材料在不同电解液体系中的正负极电容性能,且当氮掺杂含量为8%时性能提升最为显著。在KOH电解液体系中,含氮官能团对负极电容贡献明显高于正极,容差最高可达57.9 F/g;在H2SO4电解液体系中,正负极电容容量较为对称;在Et4NBF4/PC电解液体系中,容量的提升主要作用在负极。氮掺杂中孔炭材料正负极不对称电容行为的研究,为优化正负电极活性物质的比例进而提高整个电容器的能量密度提供了研究基础。
  • Winter M, Brodd R J. What are batteries, fuel cells, and supercapacitors[J] Chemical Reviews, 2004, 35(50):4245-4269.
    Hadjipaschalis I, Poullikkas A, Efthimiou V. Overview of current and future energy storage technologies for electric power applications[J]. Renewable & Sustainable Energy Reviews, 2009, 13(6-7):1513-1522.
    Chen H S, Cong T N, Yang W, et al. Progress in electrical energy storage system:a critical review[J]. Progress in Natural Science:Materials International, 2009, 19(3):291-312.
    Lewandowski A, Galinski M. Practical and theoretical limits for electrochemical double-layer capacitors[J]. Journal of Power Sources, 2007, 173(2):822-828.
    Frackowiak E. Carbon materials for supercapacitor application[J]. Physical Chemistry Chemical Physics Pccp, 2007, 9(15):1774-1785.
    Zhang L L, Zhao X S. Carbon-based materials as supercapacitor electrodes[J]. Chemical Society Reviews, 2009, 38(9):2520-2531.
    Huang J S, Sumpter B G, Meunier V. A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes[J]. Chemistry (Weinheim an der Bergstrasse, Germany), 2008, 14(22):6614-26.
    Pandolfo A G, Hollenkamp A F. Carbon properties and their role in supercapacitors[J]. Journal of Power Sources, 2006, 157(1):1-27.
    Conway, B. E. Electrochemical Supercapacitors:Scientific Fundamentals and Technological Applications[M]. Kluwer Academic/Plenum Publishers, New York, 1999.
    Hulicova-Jurcakova D, Kodama M, Shiraishi S, Hatori H, Zhu Z H, Lu G Q. Nitrogen-Enriched Nonporous Carbon Electrodes with Extraordinary Supercapacitance[J]. Advanced Functional matrials, 2009, 19, (11):1800-1809.
    Seredych M, D Hulicova-Jurcakova, Lu G Q, et al. Surface functional groups of carbons and the effects of their chemical character, density and accessibility to ions on electrochemical performance[J]. 2008, 46(11):475-1488.
    Jang I, Muramatsu H, Park K, et al. Capacitance response of double-walled carbon nanotubes depending on surface modification[J]. Electrochemistry Communications, 2009, 11(4):19-723.
    Jeong H M, Lee J W, Shin W H, et al. Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes[J]. Nano Letter, 2011, 11(6):2472-2477.
    Ismagilov Z, Shalagina A, Podyacheva O, et al. Structure and electrical conductivity of nitrogen-doped carbon nanofibers[J], Carbon, 2009, 47(8):1922-1929.
    Kim W, Joo J B, Kim N, et al. Preparation of nitrogen-doped mesoporous carbon nanopipes for the electrochemical double layer capacitor[J]. Carbon, 2009, 47(5):1407-1411.
    Lee Y-H, Chang K-H, Hu C-C. Differentiate the pseudocapacitance and double-layer capacitance contributions for nitrogen-doped reduced graphene oxide in acidic and alkaline electrolytes[J]. Journal of Power Sources, 2013, 227(4):00-308.
    Chen H C, Sun F G, Wang J T, et al. Nitrogen doping effects on the physical and chemical properties of mesoporous carbons[J]. Journal of Physical Chemistry C, 2013, 117(16):8318-8328.
    IUPAC Manual of Symbols and Terminology[M]. Pure Apply Chemicstry,1972, 31:78-638.
    Sun G W, Long D H, Liu X J. Asymmetric capacitance response from the chemical characteristics of activated carbons in KOH electrolyte[J]. Journal of Electroanalytical Chemistry, 2011, 659(2):61-167.
  • 加载中
图(1)
计量
  • 文章访问数:  391
  • HTML全文浏览量:  118
  • PDF下载量:  482
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-30
  • 录用日期:  2017-12-28
  • 修回日期:  2017-10-06
  • 刊出日期:  2017-12-28

目录

    /

    返回文章
    返回