留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三维分级多孔炭微球的制备及在锂空气电池中的应用

杨宁 胡东润 曹博凯 陈永 李德 陈大明

杨宁, 胡东润, 曹博凯, 陈永, 李德, 陈大明. 三维分级多孔炭微球的制备及在锂空气电池中的应用. 新型炭材料, 2017, 32(6): 564-571.
引用本文: 杨宁, 胡东润, 曹博凯, 陈永, 李德, 陈大明. 三维分级多孔炭微球的制备及在锂空气电池中的应用. 新型炭材料, 2017, 32(6): 564-571.
YANG Ning, HU Dong-run, CAO Bo-kai, CHEN Yong, LI De, CHEN Da-ming. Preparation of three-dimensional hierarchical porous carbon microspheres for use as a cathode material in lithium-air batteries. New Carbon Mater., 2017, 32(6): 564-571.
Citation: YANG Ning, HU Dong-run, CAO Bo-kai, CHEN Yong, LI De, CHEN Da-ming. Preparation of three-dimensional hierarchical porous carbon microspheres for use as a cathode material in lithium-air batteries. New Carbon Mater., 2017, 32(6): 564-571.

三维分级多孔炭微球的制备及在锂空气电池中的应用

基金项目: 国家自然科学基金(51162006,51362009);海南省重点项目(ZDXM2015118);国际科技合作专项(KJHZ2015-02).
详细信息
    作者简介:

    杨宁,硕士.E-mail:yn20130910@163.com

    通讯作者:

    陈永,博士,教授.E-mail:ychen2002@163.com

  • 中图分类号: TM912.9

Preparation of three-dimensional hierarchical porous carbon microspheres for use as a cathode material in lithium-air batteries

Funds: National Natural Science Foundational of China (51162006,51362009);Key Project of Hainan Province (ZDXM2015118);Projects of International Scientific and Technological Cooperation (KJHZ2015-02).
  • 摘要: 以尿素与甲醛为原料,在酸性条件下沉淀聚合制备脲醛树脂微球。随后进行预氧化、高温热处理制备炭微球。探究了脲醛比、固化剂浓度对炭微球形貌、结构和比表面积的影响。采用扫描电镜、透射电镜、N2吸附等手段对所得产品的形貌与孔结构进行了表征。结果表明:当脲醛比为1∶0.8,固化剂浓度为0.5 M时,制备得到粒径分布均一、分散性好、球形度高的炭微球。其比表面积为498 m2·g-1。通过活化处理,比表面积提高为827 m2·g-1。用于锂空气电池的正极材料,在电流密度为100 mA·g-1时,首次充放电比容量达到2 017 mAh·g-1和2 075 mAh·g-1
  • Armand M, Tarascon J M. Building better batteries[J]. Nature, 2008, 451(7179):652-657.
    Bruce P G, Freunberger S A, Hardwick L J, et al. Li-O2 and Li-S batteries with high energy storage[J]. Nature Materials, 2012, 11(1):19-29.
    Zhang J G, Wang D Y, Xu W, et al. Ambient operation of Li-Air batteries[J]. Journal of Power Sources, 2010, 195(13):4332-4337.
    Sun B, Wang B, Su D W, et al. Graphene nanosheets as cathode catalysts for lithium-air batteries with an enhanced electrochemical performance[J]. Carbon, 2012, 50(2):727-733.
    Xiao J, Wang D H, Xu W, et al. Optimization of air electrode for Li/air batteries[J]. Journal of The Electrochemical Society, 2010, 157(4):A487-A492.
    Lim H D, Park K Y, Song H, et al. Enhanced Power and Rechargeability of a Li-O2 Battery Based on a Hierarchical-Fibril CNT Electrode[J]. Advanced Materials, 2013, 25(9):1348-1352.
    Mi R, Li S M, Liu X C, et al. Electrochemical performance of binder-free carbon nanotubes with different nitrogen amounts grown on the nickel foam as cathodes in Li-O2 batteries[J]. Journal of Materials Chemistry A, 2014, 2(44):18746-18753.
    Thomas M L, Yamanaka K, Ohta T, et al. A perfluorinated moiety-grafted carbon nanotube electrode for the non-aqueous lithium-oxygen battery[J]. Chemical Communications, 2015, 51(19):3977-3980.
    Zhou W, Cheng Y, Yang X F, et al. Iridium incorporated into deoxygenated hierarchical graphene as a high-performance cathode for rechargeable Li-O2 batteries[J]. Journal of Materials Chemistry A, 2015, 3(28):14556-14561.
    Zhang W Y, Zhu J X, Ang H X, et al. Binder-free graphene foams for O2electrodes of Li-O2 batteries[J]. Nanoscale, 2013, 5(20):9651-9658.
    Mitchell R R, Gallant B M, Thompson C V, et al. All-carbon-nanofiber electrodes for high-energy rechargeable Li-O2 batteries[J]. Energy & Environmental Science, 2011, 4(8):2952-2958.
    Hulicova-Jurcakova D, Puziy A M, Poddubnaya O I, et al. Highly stable performance of supercapacitors from phosphorus-enriched carbons[J]. J Am Chem Soc, 2009, 131(14):5026-5027.
    Seema H, Kemp K C, Le N H, et al. Highly selective CO2 capture by S-doped microporous carbon materials[J]. Carbon, 2014, 66:320-326.
    Wang D W, Li F, Chen Z G, et al. Synthesis and electrochemical property of boron-doped mesoporous carbon in supercapacitor[J]. Chemistry of Materials, 2008, 20(22):7195-7200.
    Wu Y P, Fang S B, Jiang Y Y. Effects of nitrogen on the carbon anode of a lithium secondary battery[J]. Solid State Ionics, 1999, 120(1):117-123.
    Qu L T, Liu Y, Baek J B, et al. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells[J]. ACS nano, 2010, 4(3):1321-1326.
    Reddy A L M, Srivastava A, Gowda S R, et al. Synthesis of nitrogen-doped graphene films for lithium battery application[J]. ACS nano, 2010, 4(11):6337-6342.
    Labus K, Gryglewicz S, Machnikowski J. Granular KOH-activated carbons from coal-based cokes and their CO2 adsorption capacity[J]. Fuel, 2014, 118:9-15.
    Geng D S, Ding N, Hor T S A, et al. Potential of metal-free "graphene alloy" as electrocatalysts for oxygen reduction reaction[J]. Journal of Materials Chemistry A, 2015, 3(5):1795-1810.
    Cao B, Liu H, Xing Z, et al. Preparation of nitrogen-doped carbon spheres by injecting pyrolysis of pyridine[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(8):1786-1793.
    Zhao J, Lai H W, Lyu Z Y, et al. Hydrophilic Hierarchical Nitrogen-Doped Carbon Nanocages for Ultrahigh Supercapacitive Performance[J]. Adv Mater, 2015, 27(23):3541-3545.
    Yuan H R, Deng L F, Cai X X, et al. Nitrogen-doped carbon sheets derived from chitin as non-metal bifunctional electrocatalysts for oxygen reduction and evolution[J]. RSC Advances, 2015, 5(69):56121-56129.
    Deng X, Zhao B T, Zhu L, et al. Molten salt synthesis of nitrogen-doped carbon with hierarchical pore structures for use as high-performance electrodes in supercapacitors[J]. Carbon, 2015, 93:48-58.
    Zhang L M, Wang Z B, Zhang J J, et al. Honeycomb-like mesoporous nitrogen-doped carbon supported Pt catalyst for methanol electrooxidation[J]. Carbon, 2015, 93:1050-1058.
    董英男. 脲醛树脂基炭用作电化学电容器电极材料的研究[D]. 天津大学, 2012. (DONG Yingnan. Study on urea formaldehyde resin based carbon using as electrode materials of electrochemical capacitors[D]. Tianjin University, 2012.)
    Chen X Y, Chen C, Zhang Z J, et al. Nitrogen-doped porous carbon for supercapacitor with long-term electrochemical stability[J]. Journal of Power Sources, 2013, 230:50-58.
  • 加载中
图(1)
计量
  • 文章访问数:  373
  • HTML全文浏览量:  104
  • PDF下载量:  343
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-25
  • 录用日期:  2017-12-28
  • 修回日期:  2017-10-15
  • 刊出日期:  2017-12-28

目录

    /

    返回文章
    返回