留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

荧光碳点的制备及其肿瘤诊断和治疗中的应用研究进展

吕春祥 李利平

吕春祥, 李利平. 荧光碳点的制备及其肿瘤诊断和治疗中的应用研究进展. 新型炭材料, 2018, 33(1): 12-18.
引用本文: 吕春祥, 李利平. 荧光碳点的制备及其肿瘤诊断和治疗中的应用研究进展. 新型炭材料, 2018, 33(1): 12-18.
LU Chun-xiang, LI li-ping. Progress in research on the preparation of carbon dots and their use in tumor theranostics. New Carbon Mater., 2018, 33(1): 12-18.
Citation: LU Chun-xiang, LI li-ping. Progress in research on the preparation of carbon dots and their use in tumor theranostics. New Carbon Mater., 2018, 33(1): 12-18.

荧光碳点的制备及其肿瘤诊断和治疗中的应用研究进展

详细信息
    通讯作者:

    吕春祥,研究员.E-mail:lucx@sxicc.ac.cn

  • 中图分类号: TQ127.1+1

Progress in research on the preparation of carbon dots and their use in tumor theranostics

  • 摘要: 碳点是一种新型的碳基荧光纳米材料,因具有优异的荧光性能、低毒性、良好的水溶性及表面易修饰等优点,在生物医学领域有很好的应用潜力。本文重点从工艺的角度对碳点的制备进行阐述,介绍红光和近红外荧光碳点的研究进展,及碳点在诊断和治疗肿瘤方面的应用研究,探讨目前碳点发展的限制因素及未来的发展趋势。
  • Xu X, Ray R, Gu Y, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments[J]. J Am Chem Soc, 2004, 126(40):12736-12737.
    Sun Y P, Zhou B, Lin Y, et al. Quantum-sized carbon dots for bright and colorful photoluminescence[J]. J Am Chem Soc, 2006, 128(24):7756-7757.
    Wu X, Liu H, Liu J, et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots[J]. Nat Biotechnol, 2003, 21(1):41-46.
    Zhu S, Wang L, Zhou N, et al. The crosslink enhanced emission (CEE) in non-conjugated polymer dots:From the photoluminescence mechanism to the cellular uptake mechanism and internalization[J]. Chem Commun, 2014, 50(89):13845-13848.
    Dong Y, Pang H, Yang H B, et al. Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission[J]. Angew Chem Int Edit, 2013, 52(30):7800-7804.
    Yuan Y H, Liu Z X, Li R S, et al. Synthesis of nitrogen-doping carbon dots with different photoluminescence properties by controlling the surface states[J]. Nanoscale, 2016, 8(1):294-297.
    Xiaoyou X, Robert R, Yunlong G, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments[J]. J Am Chem Soc, 2004, 126(40):12736-12737.
    Cao L, Wang X, Meziani M J, et al. Carbon dots for multiphoton bioimaging[J]. J Am Chem Soc, 2007, 129(37):11318-11319.
    Lu J, Yang J X, Wang J, et al. One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids[J]. ACS Nano, 2009, 3(8):2367-2375.
    Bourlinos A B, Stassinopoulos A, Anglos D, et al. Photoluminescent carbogenic dots[J]. Chem Mater, 2008, 20(14):4539-4541.
    Zhu H, Wang X, Li Y, et al. Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties[J]. Chem Commun, 2009, (34):5118-5120.
    Wu Z L, Zhang P, Gao M X, et al. One-pot hydrothermal synthesis of highly luminescent nitrogen-doped amphoteric carbon dots for bioimaging from Bombyx mori silk-natural proteins[J]. J Mater Chem B, 2013, 1(22):2868-2873.
    Wang X, Cao L, Yang S T, et al. Bandgap-like strong fluorescence in functionalized carbon nanoparticles[J]. Angew Chem Int Edit, 2010, 122(31):5438-5442.
    Anilkumar P, Wang X, Cao L, et al. Toward quantitatively fluorescent carbon-based "quantum" dots[J]. Nanoscale, 2011, 3(5):2023-2027.
    Yang S T, Wang X, Wang H, et al. Carbon dots as nontoxic and high-performance fluorescence imaging agents[J]. J Phys Chem C, 2009, 113(42):18110-18114.
    Zheng X T, Ananthanarayanan A, Luo K Q, et al. Glowing graphene quantum dots and carbon dots:properties, syntheses, and biological applications[J]. Small, 2015, 11(14):1620-1636.
    Miao P, Han K, Tang Y, et al. Recent advances in carbon nanodots:synthesis, properties and biomedical applications[J]. Nanoscale, 2015, 7(5):1586-1595.
    Zhao A, Chen Z, Zhao C, et al. Recent advances in bioapplications of C-dots[J]. Carbon, 2015, 85:309-327.
    Bhunia S K, Saha A, Maity A R, et al. Carbon nanoparticle-based fluorescent bioimaging probes[J]. Sci Rep, 2013, 3(3):1473.
    Dong Y, Wang R, Li H, et al. Polyamine-functionalized carbon quantum dots for chemical sensing[J]. Carbon, 2012, 50(8):2810-2815.
    Lei Y, Weihua J, Lipeng Q, et al. One pot synthesis of highly luminescent polyethylene glycol anchored carbon dots functionalized with a nuclear localization signal peptide for cell nucleus imaging[J]. Nanoscale, 2015, 7(14):6104-6113.
    Sun X, Brückner C, Lei Y. One-pot and ultrafast synthesis of nitrogen and phosphorus co-doped carbon dots possessing bright dual wavelength fluorescence emission[J]. Nanoscale, 2015, 7(41):17278-17282.
    Lihong S, Yanyan L, Xiaofeng L, et al. Facile and eco-friendly synthesis of green fluorescent carbon nanodots for applications in bioimaging, patterning and staining[J]. Nanoscale, 2015, 7(16):7394-7401.
    Zhu C, Zhai J, Dong S. Bifunctional fluorescent carbon nanodots:green synthesis via soy milk and application as metal-free electrocatalysts for oxygen reduction[J]. Chem Commun, 2012, 48(75):9367-9369.
    Sahu S, Behera B, Maiti T K, et al. Simple one-step synthesis of highly luminescent carbon dots from orange juice:application as excellent bio-imaging agents[J]. Chem Commun, 2012, 48(70):8835-8837.
    Wang J, Wang C F, Chen S. Amphiphilic egg-derived carbon dots:rapid plasma fabrication, pyrolysis process, and multicolor printing patterns[J]. Angew Chem Int Edit, 2012, 51(37):9297-9301.
    Zhang Z, Sun W, Wu P. Highly photoluminescent carbon dots derived from egg white:facile and green synthesis, photoluminescence properties, and multiple applications[J]. ACS Sustain Chem Eng, 2015, 3(7):1412-1418.
    Sun Y P, Wang P, Lu Z, et al. Host-guest carbon dots for enhanced optical properties and beyond[J]. Sci Rep, 2015, 5:12354.
    Stan C, Albu C, Coroaba A, et al. One step synthesis of fluorescent carbon dots through pyrolysis of N-hydroxysuccinimide[J]. J Mater Chem C, 2015, 3(4):789-795.
    Wang C, Xu Z, Cheng H, et al. A hydrothermal route to water-stable luminescent carbon dots as nanosensors for pH and temperature[J]. Carbon, 2015, 82:87-95.
    Xu Y, Jia X-H, Yin X-B, et al. Carbon quantum dot stabilized gadolinium nanoprobe prepared via a one-pot hydrothermal approach for magnetic resonance and fluorescence dual-modality bioimaging[J]. Anal Chem, 2014, 86(24):12122-12129.
    Yang Y, Cui J, Zheng M, et al. One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan[J]. Chem Commun, 2012, 48(3):380-382.
    Yang Z-C, Wang M, Yong A M, et al. Intrinsically fluorescent carbon dots with tunable emission derived from hydrothermal treatment of glucose in the presence of monopotassium phosphate[J]. Chem Commun, 2011, 47(42):11615-11617.
    Hsu P-C, Shih Z-Y, Lee C-H, et al. Synthesis and analytical applications of photoluminescent carbon nanodots[J]. Green Chem, 2012, 14(4):917-920.
    Chen B, Li F, Li S, et al. Large scale synthesis of photoluminescent carbon nanodots and their application for bioimaging[J]. Nanoscale, 2013, 5(5):1967-1971.
    Yang S, Sun J, Li X, et al. Large-scale fabrication of heavy doped carbon quantum dots with tunable-photoluminescence and sensitive fluorescence detection[J]. J Mater Chem A, 2014, 2(23):8660-8667.
    Zhang J, Yuan Y, Liang G, et al. Scale-up synthesis of fragrant nitrogen-doped carbon dots from bee pollens for bioimaging and catalysis[J]. Adv Sci, 2015, 2(4):1-6.
    Li L, Lu C, Li S, et al. A high-yield and versatile method for the synthesis of carbon dots for bioimaging applications[J]. J Mater Chem B, 2017, 5(10):1935-1942.
    Jiang W, Singhal A, Kim B Y S, et al. Assessing near-infrared quantum dots for deep tissue, organ, and animal imaging applications[J]. Jala-J Lab Autom, 2008, 13(3):6-12.
    Agostinis P, Berg K, Cengel K A, et al. Photodynamic therapy of cancer:an update[J]. CA-CANCER J CLIN, 2011, 61(4):250-281.
    Pan L, Sun S, Zhang A, et al. Truly fluorescent excitation-dependent carbon dots and their applications in multicolor cellular imaging and multidimensional sensing[J]. Adv Mater, 2015, 27(47):7782-7787.
    Ding H, Yu S-B, Wei J-S, et al. Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism[J]. ACS Nano, 2015, 10(1):484-491.
    Jiang K, Sun S, Zhang L, et al. Red, green, and blue luminescence by carbon dots:Full-color emission tuning and multicolor cellular imaging[J]. Angew Chem Int Edit, 2015, 54(18):5360-5363.
    Xiaoyun T, Yunchao L, Xiaohong L, et al. Electrochemical synthesis of small-sized red fluorescent graphene quantum dots as a bioimaging platform[J]. Chem Commun, 2015, 51(13):2544-2546.
    Li L, Zhang R, Lu C, et al. In situ synthesis of NIR-Light emission carbon dots derived from spinach for bio-imaging application[J]. J Mater Chem B, 2017, 5(35):7328-7334.
    Tao H, Yang K, Ma Z, et al. In vivo NIR fluorescence imaging, biodistribution, and toxicology of photoluminescent carbon dots produced from carbon nanotubes and graphite[J]. Small, 2012, 8(2):281-290.
    Hannah A, Luke G, Wilson K, et al. Indocyanine green-loaded photoacoustic nanodroplets:dual contrast nanoconstructs for enhanced photoacoustic and ultrasound imaging[J]. Acs Nano, 2014, 8(1):250-259.
    Barreto J A, O'malley W, Kubeil M, et al. Nanomaterials:applications in cancer imaging and therapy[J]. Adv Mater, 2011, 23(12):18-40.
    Ge J, Jia Q, Liu W, et al. Red-emissive carbon dots for fluorescent, photoacoustic, and thermal theranostics in living mice[J]. Adv Mater, 2015, 27(28):4169-4177.
    Liu Y, Ai K, Liu J, et al. Dopamine-melanin colloidal nanospheres:an efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy[J]. Adv Mater, 2013, 25(9):1353-1359.
    Ge J, Jia Q, Liu W, et al. Carbon dots with intrinsic theranostic properties for bioimaging, red-light-triggered photodynamic/photothermal simultaneous therapy in vitro and in vivo[J]. Adv Healthc Mater, 2016, 5(6):665-675.
  • 加载中
图(1)
计量
  • 文章访问数:  425
  • HTML全文浏览量:  117
  • PDF下载量:  761
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-10
  • 录用日期:  2018-02-11
  • 修回日期:  2018-01-22
  • 刊出日期:  2018-02-28

目录

    /

    返回文章
    返回