留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨质多孔炭在不同电解液中的电化学性能研究

叶灵 黄正宏 沈万慈 吕瑞涛 康飞宇 杨全红

叶灵, 黄正宏, 沈万慈, 吕瑞涛, 康飞宇, 杨全红. 石墨质多孔炭在不同电解液中的电化学性能研究. 新型炭材料, 2018, 33(1): 53-60.
引用本文: 叶灵, 黄正宏, 沈万慈, 吕瑞涛, 康飞宇, 杨全红. 石墨质多孔炭在不同电解液中的电化学性能研究. 新型炭材料, 2018, 33(1): 53-60.
YE Ling, HUANG Zheng-hong, SHEN Wan-ci, LU Rui-tao, KANG Fei-yu, YANG Quan-hong. Electrochemical performance of a porous graphitic carbon-based supercapacitor in three different electrolytes. New Carbon Mater., 2018, 33(1): 53-60.
Citation: YE Ling, HUANG Zheng-hong, SHEN Wan-ci, LU Rui-tao, KANG Fei-yu, YANG Quan-hong. Electrochemical performance of a porous graphitic carbon-based supercapacitor in three different electrolytes. New Carbon Mater., 2018, 33(1): 53-60.

石墨质多孔炭在不同电解液中的电化学性能研究

基金项目: 国家重点基础研究发展计划(2014CB932400);国家自然科学基金(51672151);深圳基础研究项目(JCYJ20150529164918734,JCYJ20170412171630020).
详细信息
    作者简介:

    叶灵,硕士.E-mail:yeling0823@foxmail.com

    通讯作者:

    黄正宏,教授.Email:zhhuang@mail.tsinghua.edu.cn;杨全红,教授.E-mail:qhyangcn@tju.edu.cn

  • 中图分类号: TQ127.1+1

Electrochemical performance of a porous graphitic carbon-based supercapacitor in three different electrolytes

Funds: National Key Basic Research Program of China (2014CB932400);National Science Foundation of China (51672151);Shenzhen Basic Research Project (JCYJ20150529164918734, JCYJ20170412171630020).
  • 摘要: 以中间相炭微球为原料,NaOH和FeCl3分别作为活化剂和催化剂,一步活化催化法制备了一种石墨质多孔炭。将该石墨质多孔炭作为超级电容器的电极材料,研究了其在1 M LiPF6/EC:DEC (v/v=1:1)、1 M Et4NBF4/PC (v/v=1:1)和1M[BMIM]BF4/AN (v/v=1:1)三种不同电解液中的电化学性能。研究表明,该石墨质多孔炭在三种电解液中均表现出优异的电化学行为,在电解液Et4NBF4/PC中性能最优,是一种理想的电容型材料。
  • 刘希邈, 詹亮, 滕娜, 等. 超级电容器用沥青焦基活性炭的制备及其电化学性能[J]. 新型炭材料, 2006, 21(1):48-53. (Liu X, Zhan L, Ten N, et al. Preparation of electrochemical performance of petroleum coke based superactivated carbons for supercapacitors[J]. New Carbon Materials, 2006, 21(1):48-53.)
    Li Z, Wu D, Huang X, et al. Fabrication of novel polymeric and carbonaceous nanoscale networks by the union of self-assembly and hypercrosslinking[J]. Energy & Environmental Science, 2014, 7:3006-3012.
    Li Z, Wu D, Liang Y, et al. Synthesis of well-defined microporous carbons by molecular-scale templating with polyhedral oligomeric silsesquioxane moieties[J]. Journal of the American Chemical Society, 2014,136:4805-4808.
    Xu F, Tang Z, Huang S, et al. Facile synthesis of ultrahigh-surface-area hollow carbon nanospheres for enhanced adsorption and energy storage[J]. Nature communications, 2015, 6.
    Wu D, Li Z, Zhong M, et al. Templated synthesis of nitrogen-enriched nanoporous carbon materials from porogenic organic precursors prepared by aTRP[J]. Angewandte Chemie International Edition, 2014, 53(15):3957-3960.
    Negre L, Daffos B, Turq V, et al. Ionogel-based solid-state supercapacitor operating over a wide range of temperature[J]. Electrochimica Acta, 2016.
    Xu X, Liu Y, Wang M, et al. Hierarchical hybrids with microporous carbon spheres decorated three-dimensional graphene frameworks for capacitive applications in supercapacitor and deionization[J]. Electrochimica Acta, 2016, 193:88-95.
    周鹏伟, 李宝华, 康飞宇, 等.椰壳活性炭基超级电容器的研制与开发[J]. 新型炭材料, 2006, 21(2):125-130. (Zhou P, Li B, Kang F, et al. The development of supercapacitors from coconut-shell activated carbon[J]. New Carbon Materials, 2016, 21(2):125-130.)
    Zhang J, Lv W, Tao Y, et al. Ultrafast high-volumetric sodium storage of folded-graphene electrodes through surface-induced redox reactions[J]. Energy Storage Materials, 2015, 1:112-118.
    曲江英, 李雨佳, 李传鹏, 等. 还原氧化石墨烯Mn3O4纳米复合材料的合成及其在超级电容器中的应用[J]. 新型炭材料, 2014, 29(3):186-192. (Qu J, Li Y, Li C, et al. Synthesis of reduced graphene oxide/Mn3O4 nanocomposites for supercapacitors[J]. New Carbon Materials, 2014, 29(3):186-192.)
    Wang J, Kaskel S. KOH activation of carbon-based materials for energy storage[J]. Journal of Materials Chemistry, 2012, 22(45):23710-23725.
    Yuan C, Gao B, Shen L, et al. Hierarchically structured carbon-based composites:design, synthesis and their application in electrochemical capacitors[J]. Nanoscale, 2011, 3(2):529-545.
    Liang Q, Ye L, Huang Z, et al. A honeycomb-like porous carbon derived from pomelo peel for use in high-performance supercapacitors[J]. Nanoscale, 2014, 6:13831-13837.
    Zhu Y, Hu H, Li W, et al. Resorcinol-formaldehyde based porous carbon as an electrode material for supercapacitors[J]. Carbon, 2007, 45(1):160-165.
    Lv Y, Zhang F, Dou Y, et al. A comprehensive study on KOH activation of ordered mesoporous carbons and their supercapacitor application[J]. Journal of Materials Chemistry. 2012, 22(1):93-9
    Franklin R E. Homogeneous and heterogeneous graphitization of carbon[J]. Nature, 1956, 177:238-239.
    ōya A, Marsh H. Phenomena of catalytic graphitization[J]. Journal of Materials Science, 1982, 17(2):309-322.
    Franklin R E. Crystallite growth in graphitizing and non-graphitizing carbons[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1951, 209(1097):196-218.
    Qian W, Sun F, Xu Y, et al. Human hair-derived carbon flakes for electrochemical supercapacitors[J]. Energy & Environmental Science, 2014, 7(1):379-386.
    Zhang J, Lv W, Zheng D, et al. The Interplay of oxygen functional groups and folded texture in densified graphene electrodes for compact sodium-Ion capacitors[J]. Advanced Energy Materials, 2018, 1702395.
    Tao Y, Xie X, Lv W, et al. Towards ultrahigh volumetric capacitance:graphene derived highly dense but porous carbons for supercapacitors[J]. Scientific Reports, 2013, 3:2975.
    Béguin F, Presser V, Balducci A, et al. Carbons and electrolytes for advanced supercapacitors[J]. Advanced Materials, 2014, 26(14):2219-2251.
    Li H, Tao Y, Zheng X, et al. Ultra-thick graphene bulk supercapacitor electrodes for compact energy storage[J]. Energy & Environmental Science, 2016, 9(10):3135-3142.
    Xu Y, Tao Y, Zheng X, et al. A metal-free supercapacitor electrode material with a record high volumetric capacitance over 800 F cm-3[J]. Advanced Materials, 2015, 27(48):8082-8087.
    Xu Y, Tao Y, Li H, et al. Dual electronic-ionic conductivity of pseudo-capacitive filler enables high volumetric capacitance from dense graphene micro-particles[J]. Nano Energy, 2017, 36:349-355.
    Lei Y, Huang Z, Yang Y, et al. Porous mesocarbon microbeads with graphitic shells:constructing a high-rate, high-capacity cathode for hybrid supercapacitor[J]. Scientific Reports, 2013, 3.
    Ye L, Liang Q, Huang Z H, et al. A supercapacitor constructed with a partially graphitized porous carbon and its performance over a wide working temperature range[J]. Journal of Materials Chemistry A, 2015, 3(37):18860-18866.
  • 加载中
图(1)
计量
  • 文章访问数:  405
  • HTML全文浏览量:  107
  • PDF下载量:  768
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-25
  • 录用日期:  2018-02-11
  • 修回日期:  2017-12-15
  • 刊出日期:  2018-02-28

目录

    /

    返回文章
    返回